scispace - formally typeset
Search or ask a question
Author

Giovanni Melillo

Other affiliations: Bristol-Myers Squibb
Bio: Giovanni Melillo is an academic researcher from Science Applications International Corporation. The author has contributed to research in topics: Angiogenesis & Vascular endothelial growth factor. The author has an hindex of 40, co-authored 73 publications receiving 7427 citations. Previous affiliations of Giovanni Melillo include Bristol-Myers Squibb.


Papers
More filters
Journal ArticleDOI
TL;DR: It is described that oxygen availability is a determinant parameter in the setting of chemotactic responsiveness to stromal-derived factor 1 (CXCL12), and the Hyp–Hyp-inducible factor 1 α–CXCR4 pathway may regulate trafficking in and out of hypoxic tissue microenvironments.
Abstract: Cell adaptation to hypoxia (Hyp) requires activation of transcriptional programs that coordinate expression of genes involved in oxygen delivery (via angiogenesis) and metabolic adaptation (via glycolysis). Here, we describe that oxygen availability is a determinant parameter in the setting of chemotactic responsiveness to stromal-derived factor 1 (CXCL12). Low oxygen concentration induces high expression of the CXCL12 receptor, CXC receptor 4 (CXCR4), in different cell types (monocytes, monocyte-derived macrophages, tumor-associated macrophages, endothelial cells, and cancer cells), which is paralleled by increased chemotactic responsiveness to its specific ligand. CXCR4 induction by Hyp is dependent on both activation of the Hyp-inducible factor 1 alpha and transcript stabilization. In a relay multistep navigation process, the Hyp-Hyp-inducible factor 1 alpha-CXCR4 pathway may regulate trafficking in and out of hypoxic tissue microenvironments.

834 citations

Journal ArticleDOI
TL;DR: The iNOS- HRE is a novel regulatory element of the iN OS promoter activity in murine macrophages and provides the first evidence that iNos is a hypoxia-inducible gene.
Abstract: Picolinic acid, a catabolite of L-tryptophan, activates the transcription of the inducible nitric oxide synthase gene (iNOS) in IFN-gamma-treated murine macrophages. We performed functional studies on the 5' flanking region of the iNOS gene linked to a CAT reporter gene to identify the cis-acting element(s) responsible for the activation of iNOS transcription by picolinic acid. Transient transfection assays showed that the full-length iNOS promoter in the murine macrophage cell line ANA-1 was activated by the synergistic interaction between IFN-gamma and picolinic acid. Deletion or mutation of the iNOS promoter region from -227 to -209, containing a sequence homology to a hypoxia-responsive enhancer (iNOS-HRE), decreased picolinic acid- but not LPS-induced CAT activity by more than 70%. Functional studies using a tk promoter-CAT reporter gene plasmid demonstrated that the iNOS-HRE was sufficient to confer inducibility by picolinic acid but not by IFN-gamma or LPS. Electrophoretic mobility shift assays confirmed that picolinic acid alone induced a specific binding activity to the iNOS-HRE. Furthermore, we found that the iNOS-HRE activity was inducible by hypoxia and that hypoxia in combination with IFN-gamma activated the iNOS promoter in transient transfection assays and induced iNOS transcription and mRNA expression. These data establish that the iNOS-HRE is a novel regulatory element of the iNOS promoter activity in murine macrophages and provide the first evidence that iNOS is a hypoxia-inducible gene.

635 citations

Journal Article
TL;DR: The luciferase-based high-throughput screen is a feasible tool for the identification of small molecule inhibitors of HIF-1 transcriptional activation and the results suggest that altered Topo-I function may be associated with repression of Hif-1-dependent induction of gene expression.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a master regulator of the transcriptional response to oxygen deprivation. HIF-1 has been implicated in the regulation of genes involved in angiogenesis [ e.g. , vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase] and anaerobic metabolism ( e.g. , glycolytic enzymes). HIF-1 is essential for angiogenesis and is associated with tumor progression. In addition, overexpression of HIF-1α has been demonstrated in many common human cancers. Therefore, HIF-1 is an attractive molecular target for development of novel cancer therapeutics. We have developed a cell-based high-throughput screen for the identification of small molecule inhibitors of the HIF-1 pathway. We have genetically engineered U251 human glioma cells to stably express a recombinant vector in which the luciferase reporter gene is under control of three copies of a canonical hypoxia-responsive element (U251-HRE). U251-HRE cells consistently expressed luciferase in a hypoxia- and HIF-1-dependent fashion. We now report the results of a pilot screen of the National Cancer Institute “Diversity Set,” a collection of approximately 2000 compounds selected to represent the greater chemical diversity of the National Cancer Institute chemical repository. We found four compounds that specifically inhibited HIF-1-dependent induction of luciferase but not luciferase expression driven by a constitutive promoter. In addition, these compounds inhibited hypoxic induction of VEGF mRNA and protein expression in U251 cells. Interestingly, three compounds are closely related camptothecin analogues and topoisomerase (Topo)-I inhibitors. We show that concomitant with HIF-1 and VEGF inhibition, the activity of the Topo-I inhibitors tested is associated with induction of cyclooxygenase 2 mRNA expression. The luciferase-based high-throughput screen is a feasible tool for the identification of small molecule inhibitors of HIF-1 transcriptional activation. In addition, our results suggest that altered Topo-I function may be associated with repression of HIF-1-dependent induction of gene expression.

466 citations

Journal ArticleDOI
TL;DR: It is shown that it is possible to identify small molecules that inhibit HIF-1 DNA binding to endogenous promoters and echinomycin, a small-molecule known to bind DNA in a sequence-specific fashion, was investigated.
Abstract: The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor progression and metastasis. To identify inhibitors of HIF-1 DNA-binding activity, we expressed truncated HIF-1α and HIF-1β proteins containing the basic-helix-loop-helix and PAS domains. Expressed recombinant HIF-1α and HIF-1β proteins induced a specific DNA-binding activity to a double-stranded oligonucleotide containing a canonical hypoxia-responsive element (HRE). One hundred twenty-eight compounds previously identified in a HIF-1–targeted cell-based high-throughput screen of the National Cancer Institute 140,000 small-molecule library were tested in a 96-well plate ELISA for inhibition of HIF-1 DNA-binding activity. One of the most potent compounds identified, echinomycin (NSC-13502), a small-molecule known to bind DNA in a sequence-specific fashion, was further investigated. Electrophoretic mobility shift assay experiments showed that NSC-13502 inhibited binding of HIF-1α and HIF-1β proteins to a HRE sequence but not binding of the corresponding proteins to activator protein-1 (AP-1) or nuclear factor-κB (NF-κB) consensus sequences. Interestingly, chromatin immunoprecipitation experiments showed that NSC-13502 specifically inhibited binding of HIF-1 to the HRE sequence contained in the vascular endothelial growth factor (VEGF) promoter but not binding of AP-1 or NF-κB to promoter regions of corresponding target genes. Accordingly, NSC-13502 inhibited hypoxic induction of luciferase in U251-HRE cells and VEGF mRNA expression in U251 cells. Our results indicate that it is possible to identify small molecules that inhibit HIF-1 DNA binding to endogenous promoters.

458 citations

Journal ArticleDOI
TL;DR: The MS-275 oral formulation on the daily schedule was intolerable at a dose and schedule explored and a more frequent dosing schedule, weekly x 4, repeated every 6 weeks is presently being evaluated.
Abstract: Purpose The objective of this study was to define the maximum-tolerated dose (MTD), the recommended phase II dose, the dose-limiting toxicity, and determine the pharmacokinetic (PK) and pharmacodynamic profiles of MS-275. Patients and Methods Patients with advanced solid tumors or lymphoma were treated with MS-275 orally initially on a once daily × 28 every 6 weeks (daily) and later on once every-14-days (q14-day) schedules. The starting dose was 2 mg/m2 and the dose was escalated in three- to six-patient cohorts based on toxicity assessments. Results With the daily schedule, the MTD was exceeded at the first dose level. Preliminary PK analysis suggested the half-life of MS-275 in humans was 39 to 80 hours, substantially longer than predicted by preclinical studies. With the q14-day schedule, 28 patients were treated. The MTD was 10 mg/m2 and dose-limiting toxicities were nausea, vomiting, anorexia, and fatigue. Exposure to MS-275 was dose dependent, suggesting linear PK. Increased histone H3 acetylation ...

395 citations


Cited by
More filters
Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Abstract: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.

6,024 citations

Journal ArticleDOI
TL;DR: Recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.

5,568 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
TL;DR: Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Abstract: ▪ Abstract At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxid...

4,027 citations