scispace - formally typeset
Search or ask a question
Author

Giovanni Pareschi

Bio: Giovanni Pareschi is an academic researcher from INAF. The author has contributed to research in topics: Telescope & Cherenkov Telescope Array. The author has an hindex of 24, co-authored 203 publications receiving 3130 citations. Previous affiliations of Giovanni Pareschi include Brera Astronomical Observatory & University of São Paulo.


Papers
More filters
Posted Content
Kirpal Nandra, Didier Barret, Xavier Barcons, Andrew C. Fabian  +236 moreInstitutions (18)
TL;DR: The Advanced Telescope for High Energy Astrophysics (Athena+) mission as discussed by the authors provides the necessary performance (e.g., angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe.
Abstract: This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.

552 citations

Journal ArticleDOI
Shuang-Nan Zhang1, Andrea Santangelo1, Andrea Santangelo2, Marco Feroci3  +150 moreInstitutions (21)
TL;DR: The enhanced X-ray Timing and Polarimetry mission—eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism and will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects.
Abstract: In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: (1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload; (2) the elements and functions of the mission, from the spacecraft to the ground segment.

206 citations

Journal ArticleDOI
TL;DR: The potential virucidal effects of UV-C irradiation on SARS-CoV-2 were experimentally evaluated for different illumination doses and virus concentrations (1000, 5, 0.05 MOI) as discussed by the authors.
Abstract: The potential virucidal effects of UV-C irradiation on SARS-CoV-2 were experimentally evaluated for different illumination doses and virus concentrations (1000, 5, 0.05 MOI). At a virus density comparable to that observed in SARS-CoV-2 infection, an UV-C dose of just 3.7 mJ/cm2 was sufficient to achieve a more than 3-log inactivation without any sign of viral replication. Moreover, a complete inactivation at all viral concentrations was observed with 16.9 mJ/cm2. These results could explain the epidemiological trends of COVID-19 and are important for the development of novel sterilizing methods to contain SARS-CoV-2 infection.

163 citations

Journal ArticleDOI
Paolo Soffitta1, Xavier Barcons2, Ronaldo Bellazzini, João Braga3, Enrico Costa1, George W. Fraser4, Szymon Gburek5, Juhani Huovelin6, Giorgio Matt7, Mark Pearce8, Mark Pearce9, Juri Poutanen10, Victor Reglero11, Andrea Santangelo12, R. A. Sunyaev13, Gianpiero Tagliaferri1, Martin C. Weisskopf14, Roberto Aloisio1, Elena Amato1, Primo Attina15, Magnus Axelsson8, Magnus Axelsson9, Luca Baldini16, Stefano Basso1, Stefano Bianchi7, Pasquale Blasi1, Johan Bregeon, Alessandro Brez, Niccolò Bucciantini1, Luciano Burderi17, Vadim Burwitz13, Piergiorgio Casella1, Eugene Churazov13, Marta Civitani1, Stefano Covino1, Rui M. Curado da Silva, Giancarlo Cusumano1, Mauro Dadina1, Flavio D'Amico3, Alessandra De Rosa1, Sergio Di Cosimo1, Giuseppe Di Persio1, Tiziana Di Salvo18, Michal Dovciak19, Ronald F. Elsner14, C. J. Eyles20, Andrew C. Fabian21, Sergio Fabiani1, Hua Feng22, Salvatore Giarrusso1, R. Goosmann, Paola Grandi1, Nicolas Grosso, G. L. Israel1, Miranda Jackson9, Miranda Jackson8, Philip Kaaret23, Vladimir Karas19, Michael Kuss, Dong Lai24, Giovanni La Rosa1, Josefin Larsson9, Josefin Larsson8, Stefan Larsson9, Stefan Larsson8, Luca Latronico, Antonio Maggio1, J.M. Maia, Frédéric Marin, Marco Maria Massai16, Teresa Mineo1, Massimo Minuti, E. Moretti9, E. Moretti8, Fabio Muleri1, Stephen L. O'Dell14, Giovanni Pareschi1, Giovanni Peres18, Melissa Pesce, Pierre-Olivier Petrucci25, Michele Pinchera, Delphine Porquet, Brian D. Ramsey14, Nanda Rea2, Fabio Reale18, J. M. Rodrigo11, Agata Różańska5, Alda Rubini1, Pawel Rudawy26, Felix Ryde9, Felix Ryde8, M. Salvati1, Valdivino Alexandre de Santiago3, Sergey Sazonov27, Sergey Sazonov28, Carmelo Sgrò, Eric H. Silver29, Gloria Spandre, Daniele Spiga1, Luigi Stella1, Toru Tamagawa, Francesco Tamborra7, Fabrizio Tavecchio1, T.H.V.T. Dias, Matthew van Adelsberg30, Kinwah Wu31, Silvia Zane31 
TL;DR: The X-ray Imaging Polarimetry Explorer (XIPE) as mentioned in this paper was proposed in 2012 to the first ESA call for a small mission with a launch in 2017, but the proposal was, unfortunately, not selected.
Abstract: X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.

162 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the physical properties of 10 blazars at redshift greater than 2 detected in the 3-yr all-sky survey performed by the Burst Alert Telescope (BAT) on board the Swift satellite.
Abstract: We investigate the physical properties of 10 blazars at redshift greater than 2 detected in the 3-yr all-sky survey performed by the Burst Alert Telescope (BAT) on board the Swift satellite. We find that the jets of these blazars are among the most powerful known. Furthermore, the mass of their central black hole, inferred from the optical–ultraviolet bump, exceeds a few billions of solar masses, with accretion luminosities being a large fraction of the Eddington one. We compare their properties with those of the brightest blazars of the 3-month survey performed by the Large Area Telescope (LAT) on board the Fermi satellite. We find that the BAT blazars have more powerful jets, more luminous accretion discs and larger black hole masses than LAT blazars. These findings can be simply understood on the basis of the blazar sequence, which suggests that the most powerful blazars have a spectral energy distribution with a high-energy peak at MeV (or even sub-MeV) energies. This implies that the most extreme blazars can be found more efficiently in hard X-rays, rather than in the high-energy γ -ray band. We then discuss the implications of our findings for future missions, such as the New Hard X-ray Mission (NHXM) and especially the Energetic X-ray Imaging Survey Telescope (EXIST) mission which, during its planned 2-yr all-sky survey, is expected to detect thousands of blazars, with a few of them at z 6.

155 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

Journal ArticleDOI
Luca Amendola1, Stephen Appleby2, Anastasios Avgoustidis3, David Bacon4, Tessa Baker5, Marco Baldi6, Marco Baldi7, Marco Baldi8, Nicola Bartolo9, Nicola Bartolo6, Alain Blanchard10, Camille Bonvin11, Stefano Borgani12, Stefano Borgani6, Enzo Branchini13, Enzo Branchini6, Clare Burrage3, Stefano Camera, Carmelita Carbone14, Carmelita Carbone6, Luciano Casarini15, Luciano Casarini16, Mark Cropper17, Claudia de Rham18, J. P. Dietrich19, Cinzia Di Porto, Ruth Durrer11, Anne Ealet, Pedro G. Ferreira5, Fabio Finelli6, Juan Garcia-Bellido20, Tommaso Giannantonio19, Luigi Guzzo14, Luigi Guzzo6, Alan Heavens18, Lavinia Heisenberg21, Catherine Heymans22, Henk Hoekstra23, Lukas Hollenstein, Rory Holmes, Zhiqi Hwang24, Knud Jahnke25, Thomas D. Kitching17, Tomi S. Koivisto26, Martin Kunz11, Giuseppe Vacca27, Eric V. Linder28, M. March29, Valerio Marra30, Carlos Martins31, Elisabetta Majerotto11, Dida Markovic32, David J. E. Marsh33, Federico Marulli6, Federico Marulli7, Richard Massey34, Yannick Mellier35, Francesco Montanari36, David F. Mota15, Nelson J. Nunes37, Will J. Percival32, Valeria Pettorino38, Valeria Pettorino39, Cristiano Porciani, Claudia Quercellini, Justin I. Read40, Massimiliano Rinaldi41, Domenico Sapone42, Ignacy Sawicki43, Roberto Scaramella, Constantinos Skordis44, Constantinos Skordis43, Fergus Simpson45, Andy Taylor22, Shaun A. Thomas, Roberto Trotta18, Licia Verde45, Filippo Vernizzi38, Adrian Vollmer, Yun Wang46, Jochen Weller19, T. G. Zlosnik47 
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Abstract: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

1,211 citations

Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Alice Allafort1, Elisa Antolini2  +211 moreInstitutions (40)
TL;DR: The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented in this article, which includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs.
Abstract: The second catalog of active galactic nuclei (AGNs) detected by the Fermi Large Area Telescope (LAT) in two years of scientific operation is presented. The second LAT AGN catalog (2LAC) includes 1017 γ-ray sources located at high Galactic latitudes (|b| > 10°) that are detected with a test statistic (TS) greater than 25 and associated statistically with AGNs. However, some of these are affected by analysis issues and some are associated with multiple AGNs. Consequently, we define a Clean Sample which includes 886 AGNs, comprising 395 BL Lacertae objects (BL Lac objects), 310 flat-spectrum radio quasars (FSRQs), 157 candidate blazars of unknown type (i.e., with broadband blazar characteristics but with no optical spectral measurement yet), 8 misaligned AGNs, 4 narrow-line Seyfert 1 (NLS1s), 10 AGNs of other types, and 2 starburst galaxies. Where possible, the blazars have been further classified based on their spectral energy distributions (SEDs) as archival radio, optical, and X-ray data permit. While almost all FSRQs have a synchrotron-peak frequency 1015 Hz. The 2LAC represents a significant improvement relative to the first LAT AGN catalog (1LAC), with 52% more associated sources. The full characterization of the newly detected sources will require more broadband data. Various properties, such as γ-ray fluxes and photon power-law spectral indices, redshifts, γ-ray luminosities, variability, and archival radio luminosities and their correlations are presented and discussed for the different blazar classes. The general trends observed in 1LAC are confirmed.

981 citations