scispace - formally typeset
Search or ask a question
Author

Giovanni Resta

Bio: Giovanni Resta is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Wireless ad hoc network & Wireless network. The author has an hindex of 27, co-authored 63 publications receiving 4084 citations. Previous affiliations of Giovanni Resta include Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented a detailed analytical study of the spatial node distribution generated by random waypoint mobility and derived an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area.
Abstract: The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform However, a closed-form expression of this distribution and an in-depth investigation is still missing This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulation-based performance results to corresponding analytical results To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component This division enables us to understand how the model's parameters influence the distribution We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area The good quality of this approximation is validated through simulations using various settings of the mobility parameters In summary, this article gives a fundamental understanding of the behavior of the random waypoint model

1,122 citations

Journal ArticleDOI
TL;DR: The notion of shareability network is introduced, which allows to model the collective benefits of sharing as a function of passenger inconvenience, and to efficiently compute optimal sharing strategies on massive datasets, and demonstrates the feasibility of a shareable taxi service in New York City.
Abstract: Taxi services are a vital part of urban transportation, and a considerable contributor to traffic congestion and air pollution causing substantial adverse effects on human health. Sharing taxi trips is a possible way of reducing the negative impact of taxi services on cities, but this comes at the expense of passenger discomfort quantifiable in terms of a longer travel time. Due to computational challenges, taxi sharing has traditionally been approached on small scales, such as within airport perimeters, or with dynamical ad hoc heuristics. However, a mathematical framework for the systematic understanding of the tradeoff between collective benefits of sharing and individual passenger discomfort is lacking. Here we introduce the notion of shareability network, which allows us to model the collective benefits of sharing as a function of passenger inconvenience, and to efficiently compute optimal sharing strategies on massive datasets. We apply this framework to a dataset of millions of taxi trips taken in New York City, showing that with increasing but still relatively low passenger discomfort, cumulative trip length can be cut by 40% or more. This benefit comes with reductions in service cost, emissions, and with split fares, hinting toward a wide passenger acceptance of such a shared service. Simulation of a realistic online system demonstrates the feasibility of a shareable taxi service in New York City. Shareability as a function of trip density saturates fast, suggesting effectiveness of the taxi sharing system also in cities with much sparser taxi fleets or when willingness to share is low.

648 citations

Journal ArticleDOI
23 May 2018-Nature
TL;DR: An optimal computationally efficient solution to the problem of finding the minimum taxi fleet size using a vehicle-sharing network is presented and a nearly optimal solution amenable to real-time implementation is presented.
Abstract: Information and communication technologies have opened the way to new solutions for urban mobility that provide better ways to match individuals with on-demand vehicles. However, a fundamental unsolved problem is how best to size and operate a fleet of vehicles, given a certain demand for personal mobility. Previous studies1-5 either do not provide a scalable solution or require changes in human attitudes towards mobility. Here we provide a network-based solution to the following 'minimum fleet problem', given a collection of trips (specified by origin, destination and start time), of how to determine the minimum number of vehicles needed to serve all the trips without incurring any delay to the passengers. By introducing the notion of a 'vehicle-sharing network', we present an optimal computationally efficient solution to the problem, as well as a nearly optimal solution amenable to real-time implementation. We test both solutions on a dataset of 150 million taxi trips taken in the city of New York over one year 6 . The real-time implementation of the method with near-optimal service levels allows a 30 per cent reduction in fleet size compared to current taxi operation. Although constraints on driver availability and the existence of abnormal trip demands may lead to a relatively larger optimal value for the fleet size than that predicted here, the fleet size remains robust for a wide range of variations in historical trip demand. These predicted reductions in fleet size follow directly from a reorganization of taxi dispatching that could be implemented with a simple urban app; they do not assume ride sharing7-9, nor require changes to regulations, business models, or human attitudes towards mobility to become effective. Our results could become even more relevant in the years ahead as fleets of networked, self-driving cars become commonplace10-14.

273 citations

Proceedings ArticleDOI
01 Jun 2003
TL;DR: In this paper, the authors propose an approach to topology control based on the principle of maintaining the number of neighbors of every node equal to or slightly below a specific value k. The approach enforces symmetry on the resulting communication graph, thereby easing the operation of higher layer protocols.
Abstract: We propose an approach to topology control based on the principle of maintaining the number of neighbors of every node equal to or slightly below a specific value k. The approach enforces symmetry on the resulting communication graph, thereby easing the operation of higher layer protocols. To evaluate the performance of our approach, we estimate the value of k that guarantees connectivity of the communication graph with high probability. We then define k-Neigh, a fully distributed, asynchronous, and localized protocol that follows the above approach and uses distance estimation. We prove that k-Neigh terminates at every node after a total of 2n messages have been exchanged (with n nodes in the network) and within strictly bounded time. Finally, we present simulations results which show that our approach is about 20% more energy-efficient than a widely-studied existing protocol.

260 citations

Journal ArticleDOI
TL;DR: It is shown that spatial ordering is an intrinsic property of the two Islet-1 mosaics, dynamically maintained while new elements are inserted into the mosaic, and mathematical models show how short-range cellular interactions can guide the assemblage of these mosaics via a simple biological rule.
Abstract: The nervous system has a modular architecture with neurons of the same type commonly organized in nonrandom arrays or mosaics. Modularity is essential to parallel processing of sensory information and has provided a key element for brain evolution, but we still know very little of the way neuronal mosaics form during development. Here we have identified the immature elements of two retinal mosaics, the choline acetyltransferase (ChAT) amacrine cells, by their early expression of the homeodomain protein Islet-1, and we show that spatial ordering is an intrinsic property of the two Islet-1 mosaics, dynamically maintained while new elements are inserted into the mosaics. Migrating Islet-1 cells do not show this spatial ordering, indicating that they must move tangentially as they enter the mosaic, under the action of local mechanisms. Clonal territory analysis in X-inactivation transgenic mice confirms the lateral displacement of ChAT amacrine cells away from their clonal columns of origin, and mathematical models show how short-range cellular interactions can guide the assemblage of these mosaics via a simple biological rule.

186 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fast progress of research on energy efficiency, networking, data management and security in wireless sensor networks, and the need to compare with the solutions adopted in the standards motivates the need for a survey on this field.

1,708 citations

Journal ArticleDOI
01 Jul 2003
TL;DR: The important role that mobile ad hoc networks play in the evolution of future wireless technologies is explained and the latest research activities in these areas are reviewed, including a summary of MANETs characteristics, capabilities, applications, and design constraints.
Abstract: Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, ‘‘ad-hoc’’ network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANETs characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future. � 2003 Elsevier B.V. All rights reserved.

1,430 citations

Book
12 Aug 2005
TL;DR: In this article, the authors state several problems related to topology control in wireless ad hoc and sensor networks, and survey state-of-the-art solutions which have been proposed to tackle them.
Abstract: Topology Control (TC) is one of the most important techniques used in wireless ad hoc and sensor networks to reduce energy consumption (which is essential to extend the network operational time) and radio interference (with a positive effect on the network traffic carrying capacity). The goal of this technique is to control the topology of the graph representing the communication links between network nodes with the purpose of maintaining some global graph property (e.g., connectivity), while reducing energy consumption and/or interference that are strictly related to the nodes' transmitting range. In this article, we state several problems related to topology control in wireless ad hoc and sensor networks, and we survey state-of-the-art solutions which have been proposed to tackle them. We also outline several directions for further research which we hope will motivate researchers to undertake additional studies in this field.

1,367 citations

Journal ArticleDOI
Alan R. Jones1

1,349 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a detailed analytical study of the spatial node distribution generated by random waypoint mobility and derived an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area.
Abstract: The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform However, a closed-form expression of this distribution and an in-depth investigation is still missing This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulation-based performance results to corresponding analytical results To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component This division enables us to understand how the model's parameters influence the distribution We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area The good quality of this approximation is validated through simulations using various settings of the mobility parameters In summary, this article gives a fundamental understanding of the behavior of the random waypoint model

1,122 citations