scispace - formally typeset
Search or ask a question
Author

Girolamo Cirrincione

Bio: Girolamo Cirrincione is an academic researcher from University of Palermo. The author has contributed to research in topics: Ring (chemistry) & Indole test. The author has an hindex of 36, co-authored 211 publications receiving 3656 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that IL3L exosomes, loaded with Imatinib or with BCR-ABL siRNA, are able to target CML cells and inhibit in vitro and in vivo cancer cell growth.
Abstract: Despite Imatinib (IM), a selective inhibitor of Bcr-Abl, having led to improved prognosis in Chronic Myeloid Leukemia (CML) patients, acquired resistance and long-term adverse effects is still being encountered. There is, therefore, urgent need to develop alternative strategies to overcome drug resistance. According to the molecules expressed on their surface, exosomes can target specific cells. Exosomes can also be loaded with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. In this study, we engineered HEK293T cells to express the exosomal protein Lamp2b, fused to a fragment of Interleukin 3 (IL3). The IL3 receptor (IL3-R) is overexpressed in CML blasts compared to normal hematopoietic cells and thus is able to act as a receptor target in a cancer drug delivery system. Here we show that IL3L exosomes, loaded with Imatinib or with BCR-ABL siRNA, are able to target CML cells and inhibit in vitro and in vivo cancer cell growth.

233 citations

Journal ArticleDOI
TL;DR: A series of novel 2,5-bis(3'-indolyl)furans and 3,5 (3,5)isoxazoles were synthesized as antitumor agents and 4c showed a high level of tumor selectivity toward the 29 cell lines.

121 citations

Journal ArticleDOI
TL;DR: This Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps.
Abstract: There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addit...

114 citations

Journal ArticleDOI
TL;DR: The most relevant literature of the last decade is selected, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens.

110 citations

Journal ArticleDOI
TL;DR: This review covering literature reports from the beginning of this century to 2016 describes the synthetic pathways, the antitumor activity, the structure-activity relationship and, whenever reported, the possible mechanism of action of 1,3,5-triazine derivatives as well as of their hetero-fused compounds.

95 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations

Journal ArticleDOI
TL;DR: Melanogenesis is a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes, and its significance extends beyond the mere assignment of a color trait.
Abstract: Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents interacting via pathways activated by receptor-dependent and -independent mechanisms, in hormonal, auto-, para-, or intracrine fashion. Because of the multidirectional nature and heterogeneous character of the melanogenesis modifying agents, its controlling factors are not organized into simple linear sequences, but they interphase instead in a multidimensional network, with extensive functional overlapping with connections arranged both in series and in parallel. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortins and ACTH, whereas among the negative regulators agouti protein stands out, determining intensity of melanogenesis and also the type of melanin synthesized. Within the context of the skin as a stress organ, melanogenic activity serves as a unique molecular sensor and transducer of noxious signals and as regulator of local homeostasis. In keeping with these multiple roles, melanogenesis is controlled by a highly structured system, active since early embryogenesis and capable of superselective functional regulation that may reach down to the cellular level represented by single melanocytes. Indeed, the significance of melanogenesis extends beyond the mere assignment of a color trait.

1,737 citations

Journal ArticleDOI
TL;DR: An overview of the cosmetic products currently on the market is given and the improvement of the benefit/risk ratio of the topical therapy is shown and the lipid nanoparticles are a "nanosafe" carrier.

1,186 citations

Journal ArticleDOI
TL;DR: This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.
Abstract: 140 years ago Adolf von Baeyer proposed the structure of a heteroaromatic compound which revolutionized organic and medical chemistry: indole. After more than a century, indole itself and the complexity of naturally occurring indole derivatives continue to inspire and influence developments in synthetic chemistry. In particular, the ubiquitous presence of indole rings in pharmaceuticals, agrochemicals, and functional materials are testament to the ever increasing interest in the design of mild and efficient synthetic routes to functionalized indole derivatives. This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.

1,141 citations

Journal ArticleDOI
TL;DR: Some of the relevant and recent achievements in the biological, chemical and pharmacological activity of important indole derivatives in the areas of drug discovery and analysis are covered.
Abstract: The indole nucleus is an important element of many natural and synthetic molecules with significant biological activity. This review covers some of the relevant and recent achievements in the biological, chemical and pharmacological activity of important indole derivatives in the areas of drug discovery and analysis.

860 citations