scispace - formally typeset
Search or ask a question
Author

Gita R. Kolluru

Bio: Gita R. Kolluru is an academic researcher from California Polytechnic State University. The author has contributed to research in topics: Sexual selection & Courtship. The author has an hindex of 17, co-authored 32 publications receiving 1690 citations. Previous affiliations of Gita R. Kolluru include University of California & University of California, Riverside.

Papers
More filters
Journal ArticleDOI
TL;DR: Signals used to attract mates are often conspicuous to predators and parasites, and their evolution via sexual selection is expected to be opposed by viability selection, while plants emit attractants analogous to secondary sex characters in animals, and may also be vulnerable to signal exploitation.
Abstract: Signals used to attract mates are often conspicuous to predators and parasites, and their evolution via sexual selection is expected to be opposed by viability selection. Many secondary sexual traits may represent a compromise between attractiveness and avoidance of detection. Although such signal exploitation appears to be widespread, most examples come from species that use acoustic or olfactory mating signals, and relatively few cases of visual signal exploitation can be substantiated. Because males are usually the signaling sex, they are more at risk from predators or parasitoids that locate prey or hosts by sexual signals; this differential selection on the two sexes can affect the intensity of sexual selection on male ornamental traits. The notable exception to male signaling and female attraction occurs in pheromone-producing insects, particularly lepidopterans, which show an opposite pattern of female odor production. Exploitation of such sex pheromones is relatively rare. We discuss reasons for t...

777 citations

Journal ArticleDOI
TL;DR: Specific, testable functional hypotheses are offered for the most common pigmentary and structural components of vertebrate colour patches and how multiple trait evolution theory can be applied to the components of single colour patches.
Abstract: Colour patches are complex traits, the components of which may evolve independently through a variety of mechanisms. Although usually treated as simple, two-dimensional characters and classified as either structural or pigmentary, in reality colour patches are complicated, three-dimensional structures that often contain multiple pigment types and structural features. The basic dermal chromatophore unit of fishes, reptiles and amphibians consists of three contiguous cell layers. Xanthophores and erythrophores in the outermost layer contain carotenoid and pteridine pigments that absorb short-wave light; iridophores in the middle layer contain crystalline platelets that reflect light back through the xanthophores; and melanophores in the basal layer contain melanins that absorb light across the spectrum. Changes in any one component of a chromatophore unit can drastically alter the reflectance spectrum produced, and for any given adaptive outcome (e.g. an increase in visibility), there may be multiple biochemical or cellular routes that evolution could take, allowing for divergent responses by different populations or species to similar selection regimes. All of the mechanisms of signal evolution that previously have been applied to single ornaments (including whole colour patches) could potentially be applied to the individual components of colour patches. To reach a complete understanding of colour patch evolution, however, it may be necessary to take an explicitly multi-trait approach. Here, we review multiple trait evolution theory and the basic mechanisms of colour production in fishes, reptiles and amphibians, and use a combination of computer simulations and empirical examples to show how multiple trait evolution theory can be applied to the components of single colour patches. This integrative perspective on animal colouration opens up a host of new questions and hypotheses. We offer specific, testable functional hypotheses for the most common pigmentary (carotenoid, pteridine and melanin) and structural components of vertebrate colour patches.

245 citations

Journal ArticleDOI
TL;DR: The sex‐specificity of carotenoid effects on allograft rejection in guppies provides indirect support for the general hypothesis that males pay an immunological cost for sexual ornamentation, and casts doubt on the idea that the benefits of carOTenoid consumption, per se, could account for the origin of the preference.
Abstract: Rarely are the evolutionary origins of mate preferences known, but, recently, the preference of female guppies (Poecilia reticulata) for males with carotenoid-based sexual coloration has been linked to a sensory bias that may have originally evolved for detecting carotenoid-rich fruits. If carotenoids enhance the immune systems of these fishes, as has been suggested for other species, this could explain the origin of the attraction to orange fruits as well as the maintenance of the female preference for orange males. We used the classic immunological technique of tissue grafting to assay a component of the immune response of guppies raised on two different dietary levels of carotenoids. Individual scales were transplanted between pairs of unrelated fishes, creating reciprocal allografts. Transplanted scales were scored on a six-point rejection scale every day for 10 days. Five days later, the same pairs of fishes received a second set of allografts and were scored again. Compared with low-carotenoid-diet males, high-carotenoid-diet males mounted a significantly stronger rejection response to the second allograft but not to the first allograft. High-carotenoid-diet females, however, showed no improvement in graft rejection compared with low-carotenoid-diet females. To our knowledge, this is the first experimental evidence for sex-specific effects of carotenoid consumption on the immune system of a species with carotenoid-based sexual coloration. These results are consistent with the hypothesis that the mate preference for carotenoid coloration is maintained by the benefits to females of choosing healthy mates, but they cast doubt on the idea that the benefits of carotenoid consumption, per se, could account for the origin of the preference. The sex-specificity of carotenoid effects on allograft rejection in guppies provides indirect support for the general hypothesis that males pay an immunological cost for sexual ornamentation.

116 citations

Journal ArticleDOI
TL;DR: The results generally support the resource availability/behavioral tradeoff hypothesis while also revealing a surprising degree of ontogenetic complexity in a relatively simple system.
Abstract: Food availability can influence the optimal allocation of time and energy among alternative behaviors such as foraging, courting, and competing for mates. If populations differ consistently in food availability, selection may cause geographic divergence in allocation strategies. At the opposite extreme, a norm of reaction may evolve such that food intake influences the allocation strategy of individuals in the same way in all populations. Between these two extremes, food intake reaction norms may diverge genetically among populations. For example, at sites where food is scarce, selection may strengthen the effect of food intake on behavior, whereas at sites with abundant food, selection may be weak or even oppose plasticity. We tested these ideas by raising male guppies from streams differing in food availability in a common laboratory environment on either low or high food levels, and then observing them in the presence of male competitors (from the same population and diet group) and receptive females. Males from low-food-availability streams spent more time foraging than males from high-food-availability streams, independent of food intake. Compared with males raised on the high food level, males raised on the low food level spent more time foraging and were less aggressive towards other males. Courtship display rate increased with food intake but only in males from low-food streams. In contrast, males from high-food streams showed greater plasticity with respect to male-male aggression. These results generally support the resource availability/behavioral tradeoff hypothesis while also revealing a surprising degree of ontogenetic complexity in a relatively simple system.

86 citations

Journal ArticleDOI
TL;DR: The results obtained suggest that carotenoids strengthen parasite resistance at low levels but either benefit parasites or suppress host immunity at high levels, and emphasize the importance of evaluating the effects of diet on multiple aspects of immune system function.
Abstract: Dietary carotenoids have been shown to confer immunological benefits to some species of animals in which males also use these pigments to attract mates. Thus, the potential exists for an allocation trade-off between the sexual and immunological functions of carotenoids. Food availability may also influence immune system function. The present study examined the effects of carotenoid and food availability on the resistance of male guppies (Poecilia reticulata Peters) from four wild populations to the parasite Gyrodactylus turnbulli Harris. Intermediate levels of carotenoid ingestion resulted in the lowest parasite loads, which suggests that carotenoids strengthen parasite resistance at low levels but either benefit parasites or suppress host immunity at high levels. Males raised on the high-food level initially had fewer parasites, suggesting heightened innate immunity relative to males raised on the low-food level. Over the course of the experiment, however, the high-food males supported higher parasite population growth rates than the low-food males. The results obtained emphasize the importance of evaluating the effects of diet on multiple aspects of immune system function, and caution against assuming that positive effects of carotenoids on immunity in one context will automatically translate to other contexts.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The lability of sex-determination systems in fish makes some species sensitive to environmental pollutants capable of mimicking or disrupting sex hormone actions, and such observations provide important insight into potential impacts from endocrine disruptors, and can provide useful monitoring tools for impacts on aquatic environments.

2,283 citations

Journal ArticleDOI
TL;DR: Meta-analysis is used to ask whether different types of behaviours were more repeatable than others, and if repeatability estimates depended on taxa, sex, age, field versus laboratory, the number of measures and the interval between measures.

1,671 citations

Journal ArticleDOI
TL;DR: The potential role of oxidative stress in mediating life-history trade-offs is critically reviewed, a framework for formulating appropriate hypotheses and guiding experimental design is presented, and potentially fruitful areas for further research are indicated.
Abstract: The concept of trade-offs is central to our understanding of life-history evolution. The underlying mechanisms, however, have been little studied. Oxidative stress results from a mismatch between the production of damaging reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects. Managing oxidative stress is likely to be a major determinant of life histories, as virtually all activities generate ROS. There is a recent burgeoning of interest in how oxidative stress is related to different components of animal performance. The emphasis to date has been on immediate or short-term effects, but there is an increasing realization that oxidative stress will influence life histories over longer time scales. The concept of oxidative stress is currently used somewhat loosely by many ecologists, and the erroneous assumption often made that dietary antioxidants are necessarily the major line of defence against ROS-induced damage. We summarize current knowledge on how oxidative stress occurs and the different methods for measuring it, and highlight where ecologists can be too simplistic in their approach. We critically review the potential role of oxidative stress in mediating life-history trade-offs, and present a framework for formulating appropriate hypotheses and guiding experimental design. We indicate throughout potentially fruitful areas for further research.

1,173 citations

Journal ArticleDOI
TL;DR: A review of the literature indicates a substantial lack of empirical evidence for these various mechanisms and highlights the need for experimental studies that specifically address the fitness costs of being large at the ecological, physiological, and genetic levels.
Abstract: It is widely agreed that fecundity selection and sexual selection are the major evolutionary forces that select for larger body size in most organisms. The general, equilibrium view is that selection for large body size is eventually counterbalanced by opposing selective forces. While the evidence for selection favoring larger body size is overwhelming, counterbalancing selection favoring small body size is often masked by the good condition of the larger organism and is therefore less obvious. The suggested costs of large size are: (1) viability costs in juveniles due to long development and/or fast growth; (2) viability costs in adults and juveniles due to predation, parasitism, or starvation because of reduced agility, increased detectability, higher energy requirements, heat stress, and/or intrinsic costs of reproduction; (3) decreased mating success of large males due to reduced agility and/or high energy requirements; and (4) decreased reproductive success of large females and males due to late reproduction. A review of the literature indicates a substantial lack of empirical evidence for these various mechanisms and highlights the need for experimental studies that specifically address the fitness costs of being large at the ecological, physiological, and genetic levels. Specifically, theoretical investigations and comprehensive case studies of particular model species are needed to elucidate whether sporadic selection in time and space is sufficient to counterbalance perpetual and strong selection for large body size.

1,110 citations