scispace - formally typeset
Search or ask a question
Author

Giulio Del Zanna

Other affiliations: University College London
Bio: Giulio Del Zanna is an academic researcher from University of Cambridge. The author has contributed to research in topics: Coronal loop & Extreme ultraviolet. The author has an hindex of 28, co-authored 83 publications receiving 2732 citations. Previous affiliations of Giulio Del Zanna include University College London.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the diagnostic methods used to measure electron densities, electron temperatures, differential emission measure (DEM), and relative chemical abundances is presented, focusing on the optically thin emission from the solar atmosphere, mostly found at UV and X-ray (XUV) wavelengths.
Abstract: X-ray and ultraviolet (UV) observations of the outer solar atmosphere have been used for many decades to measure the fundamental parameters of the solar plasma. This review focuses on the optically thin emission from the solar atmosphere, mostly found at UV and X-ray (XUV) wavelengths, and discusses some of the diagnostic methods that have been used to measure electron densities, electron temperatures, differential emission measure (DEM), and relative chemical abundances. We mainly focus on methods and results obtained from high-resolution spectroscopy, rather than broad-band imaging. However, we note that the best results are often obtained by combining imaging and spectroscopic observations. We also mainly focus the review on measurements of electron densities and temperatures obtained from single ion diagnostics, to avoid issues related to the ionisation state of the plasma. We start the review with a short historical introduction on the main XUV high-resolution spectrometers, then review the basics of optically thin emission and the main processes that affect the formation of a spectral line. We mainly discuss plasma in equilibrium, but briefly mention non-equilibrium ionisation and non-thermal electron distributions. We also summarise the status of atomic data, which are an essential part of the diagnostic process. We then review the methods used to measure electron densities, electron temperatures, the DEM, and relative chemical abundances, and the results obtained for the lower solar atmosphere (within a fraction of the solar radii), for coronal holes, the quiet Sun, active regions and flares.

219 citations

Journal ArticleDOI
TL;DR: ChiANTI as discussed by the authors contains a large quantity of atomic data for the analysis of astrophysical spectra, including atomic energy levels, wavelengths, radiative transition probabilities, rate coefficients for collisional excitation, ionization, and recombination, as well as data to calculate free-free, free-bound, and two-photon continuum emission.
Abstract: CHIANTI contains a large quantity of atomic data for the analysis of astrophysical spectra. Programs are available in IDL and Python to perform calculation of the expected emergent spectrum from these sources. The database includes atomic energy levels, wavelengths, radiative transition probabilities, rate coefficients for collisional excitation, ionization, and recombination, as well as data to calculate free-free, free-bound, and two-photon continuum emission. In Version 9, we improve the modelling of the satellite lines at X-ray wavelengths by explicitly including autoionization and dielectronic recombination processes in the calculation of level populations for select members of the lithium isoelectronic sequence and Fe XVIII-XXIII. In addition, existing datasets are updated, new ions added and new total recombination rates for several Fe ions are included. All data and IDL programs are freely available at this http URL or through SolarSoft and the Python code ChiantiPy is also freely available at this https URL.

218 citations

Journal ArticleDOI
TL;DR: In this article, the authors carried out a study of active region loops using observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode using 1 ′′ raster data for an active region observed on May 19, 2007.
Abstract: We have carried out a study of active region loops using observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode using 1 ′′ raster data for an active region observed on May 19, 2007. We find that active region structures which are clearly discernible in cooler lines (� 1MK) become ’fuzzy’ at higher temperatures (� 2MK). The active region was comprised of red-shifted emissions (downflows) in the core and blue-shifted emissions (upflows) at the boundary. The flow velocities estimated in two regions located near the foot points of coronal loop showed red-shifted emission at transition region temperature and blue shifted emission at coronal temperature. The upflow speed in these

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors carried out a study of active region loops using observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode using 1'' raster data for an active region observed on 2007 May 19.
Abstract: We have carried out a study of active region loops using observations from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode using 1'' raster data for an active region observed on 2007 May 19. We find that active region structures which are clearly discernible in cooler lines (≈1 MK) become "fuzzy" at higher temperatures (≈2 MK). The active region was comprised of redshifted emissions (downflows) in the core and blueshifted emissions (upflows) at the boundary. The flow velocities estimated in the two regions located near the footpoints of coronal loop showed redshifted emission at transition region temperature and blueshifted emission at coronal temperature. The upflow speed in these regions increased with temperature. For more detailed study we selected one particular well-defined loop. Downward flows are detected along the coronal loop, being stronger in lower-temperature lines (rising up to 60 km s–1 near the footpoint). The downflow was localized toward the footpoint in transition region lines (Si VII) and toward the loop top in high-temperature line (Fe XV). By carefully accounting for the background emission we found that the loop structure was close to isothermal for each position along the loop, with the temperature rising from around 0.8 MK to 1.5 MK from the close to the base to higher up toward the apex (≈75 Mm). We derived electron density using well-established line ratio diagnostic techniques. Electron densities along the active region loop were found to vary from 1010 cm–3 close to the footpoint to 108.5 cm–3 higher up. A lower electron density, varying from 109 cm–3 close to the footpoint to 108.5 cm–3 higher up, was found for the lower temperature density diagnostic. Using these densities we derived filling factors in along the coronal loop which can be as low as 0.02 near the base of the loop. The filling factor increased with projected height of the loop. These results provide important constraints on coronal loop modeling.

162 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission.
Abstract: The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) is a five telescope package, which has been developed for the Solar Terrestrial Relation Observatory (STEREO) mission by the Naval Research Laboratory (USA), the Lockheed Solar and Astrophysics Laboratory (USA), the Goddard Space Flight Center (USA), the University of Birmingham (UK), the Rutherford Appleton Laboratory (UK), the Max Planck Institute for Solar System Research (Germany), the Centre Spatiale de Leige (Belgium), the Institut d’Optique (France) and the Institut d’Astrophysique Spatiale (France). SECCHI comprises five telescopes, which together image the solar corona from the solar disk to beyond 1 AU. These telescopes are: an extreme ultraviolet imager (EUVI: 1–1.7 R⊙), two traditional Lyot coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙) and two new designs of heliospheric imagers (HI-1: 15–84 R⊙ and HI-2: 66–318 R⊙). All the instruments use 2048×2048 pixel CCD arrays in a backside-in mode. The EUVI backside surface has been specially processed for EUV sensitivity, while the others have an anti-reflection coating applied. A multi-tasking operating system, running on a PowerPC CPU, receives commands from the spacecraft, controls the instrument operations, acquires the images and compresses them for downlink through the main science channel (at compression factors typically up to 20×) and also through a low bandwidth channel to be used for space weather forecasting (at compression factors up to 200×). An image compression factor of about 10× enable the collection of images at the rate of about one every 2–3 minutes. Identical instruments, except for different sizes of occulters, are included on the STEREO-A and STEREO-B spacecraft.

1,781 citations

Journal ArticleDOI
TL;DR: The EUV Imaging Spectrometer (EIS) as mentioned in this paper is a two-element, normal incidence design with a backside-illuminated, thinned CCD, which has a significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2 -5 s exposure times in the brightest lines.
Abstract: The EUV Imaging Spectrometer (EIS) on Hinode will observe solar corona and upper transition region emission lines in the wavelength ranges 170 – 210 A and 250 – 290 A. The line centroid positions and profile widths will allow plasma velocities and turbulent or non-thermal line broadenings to be measured. We will derive local plasma temperatures and densities from the line intensities. The spectra will allow accurate determination of differential emission measure and element abundances within a variety of corona and transition region structures. These powerful spectroscopic diagnostics will allow identification and characterization of magnetic reconnection and wave propagation processes in the upper solar atmosphere. We will also directly study the detailed evolution and heating of coronal loops. The EIS instrument incorporates a unique two element, normal incidence design. The optics are coated with optimized multilayer coatings. We have selected highly efficient, backside-illuminated, thinned CCDs. These design features result in an instrument that has significantly greater effective area than previous orbiting EUV spectrographs with typical active region 2 – 5 s exposure times in the brightest lines. EIS can scan a field of 6×8.5 arc min with spatial and velocity scales of 1 arc sec and 25 km s−1 per pixel. The instrument design, its absolute calibration, and performance are described in detail in this paper. EIS will be used along with the Solar Optical Telescope (SOT) and the X-ray Telescope (XRT) for a wide range of studies of the solar atmosphere.

1,050 citations

Journal ArticleDOI
TL;DR: The question of what heats the solar corona remains one of the most important problems in astrophysics as mentioned in this paper, and finding a definitive solution involves a number of challenging steps, beginning with an identification of the energy source and ending with a prediction of observable quantities that can be compared directly with actual observations.
Abstract: The question of what heats the solar corona remains one of the most important problems in astrophysics. Finding a definitive solution involves a number of challenging steps, beginning with an identification of the energy source and ending with a prediction of observable quantities that can be compared directly with actual observations. Critical intermediate steps include realistic modeling of both the energy release process (the conversion of magnetic stress energy or wave energy into heat) and the response of the plasma to the heating. A variety of difficult issues must be addressed: highly disparate spatial scales, physical connections between the corona and lower atmosphere, complex microphysics, and variability and dynamics. Nearly all of the coronal heating mechanisms that have been proposed produce heating that is impulsive from the perspective of elemental magnetic flux strands. It is this perspective that must be adopted to understand how the plasma responds and radiates. In our opinion, the most promising explanation offered so far is Parker's idea of nanoflares occurring in magnetic fields that become tangled by turbulent convection. Exciting new developments include the identification of the “secondary instability” as the likely mechanism of energy release and the demonstration that impulsive heating in sub-resolution strands can explain certain observed properties of coronal loops that are otherwise very difficult to understand. Whatever the detailed mechanism of energy release, it is clear that some form of magnetic reconnection must be occurring at significant altitudes in the corona (above the magnetic carpet), so that the tangling does not increase indefinitely. This article outlines the key elements of a comprehensive strategy for solving the coronal heating problem and warns of obstacles that must be overcome along the way.

873 citations

Journal ArticleDOI
TL;DR: The UMIST Database for Astrochemistry (UDfaa) as discussed by the authors contains 6173 gas-phase reactions involving 467 species, 47 of which are new to this release.
Abstract: We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types. We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss the results of these models.

608 citations

01 Dec 2007
TL;DR: An estimate of the energy carried by the waves that are spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.
Abstract: Alfven waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfven waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfven waves may carry sufficient energy.

562 citations