scispace - formally typeset
Search or ask a question
Author

Giulio Rossetti

Bio: Giulio Rossetti is an academic researcher from Istituto di Scienza e Tecnologie dell'Informazione. The author has contributed to research in topics: Complex network & Computer science. The author has an hindex of 18, co-authored 76 publications receiving 1261 citations. Previous affiliations of Giulio Rossetti include National Research Council & University of Pisa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the distinctive features and challenges of dynamic community discovery and propose a classification of published approaches, which can be used to identify the set of approaches that best fit their needs.
Abstract: Several research studies have shown that complex networks modeling real-world phenomena are characterized by striking properties: (i) they are organized according to community structure, and (ii) their structure evolves with time. Many researchers have worked on methods that can efficiently unveil substructures in complex networks, giving birth to the field of community discovery. A novel and fascinating problem started capturing researcher interest recently: the identification of evolving communities. Dynamic networks can be used to model the evolution of a system: nodes and edges are mutable, and their presence, or absence, deeply impacts the community structure that composes them. This survey aims to present the distinctive features and challenges of dynamic community discovery and propose a classification of published approaches. As a “user manual,” this work organizes state-of-the-art methodologies into a taxonomy, based on their rationale, and their specific instantiation. Given a definition of network dynamics, desired community characteristics, and analytical needs, this survey will support researchers to identify the set of approaches that best fit their needs. The proposed classification could also help researchers choose in which direction to orient their future research.

270 citations

Proceedings ArticleDOI
12 Aug 2012
TL;DR: In this article, a local-first approach to community discovery is proposed, which democratically lets each node vote for the communities it sees surrounding it in its limited view of the global system, using a label propagation algorithm.
Abstract: Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks. However, many large networks often lack a particular community organization at a global level. In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network. We propose here a simple local-first approach to community discovery, able to unveil the modular organization of real complex networks. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection. We tested this intuition against the state-of-the-art overlapping and non-overlapping community discovery methods, and found that our new method clearly outperforms the others in the quality of the obtained communities, evaluated by using the extracted communities to predict the metadata about the nodes of several real world networks. We also show how our method is deterministic, fully incremental, and has a limited time complexity, so that it can be used on web-scale real networks.

230 citations

Journal ArticleDOI
TL;DR: This work proposes Tiles, an algorithm that extracts overlapping communities and tracks their evolution in time following an online iterative procedure, and compares it with state-of-the-art community detection algorithms on both synthetic and real world networks having annotated community structure.
Abstract: Community discovery has emerged during the last decade as one of the most challenging problems in social network analysis. Many algorithms have been proposed to find communities on static networks, i.e. networks which do not change in time. However, social networks are dynamic realities (e.g. call graphs, online social networks): in such scenarios static community discovery fails to identify a partition of the graph that is semantically consistent with the temporal information expressed by the data. In this work we propose Tiles, an algorithm that extracts overlapping communities and tracks their evolution in time following an online iterative procedure. Our algorithm operates following a domino effect strategy, dynamically recomputing nodes community memberships whenever a new interaction takes place. We compare Tiles with state-of-the-art community detection algorithms on both synthetic and real world networks having annotated community structure: our experiments show that the proposed approach is able to guarantee lower execution times and better correspondence with the ground truth communities than its competitors. Moreover, we illustrate the specifics of the proposed approach by discussing the properties of identified communities it is able to identify.

111 citations

Journal ArticleDOI
TL;DR: The aim of CDlib is to allow easy and standardized access to a wide variety of network clustering algorithms, to evaluate and compare the results they provide, and to visualize them.
Abstract: Community Discovery is among the most studied problems in complex network analysis. During the last decade, many algorithms have been proposed to address such task; however, only a few of them have been integrated into a common framework, making it hard to use and compare different solutions. To support developers, researchers and practitioners, in this paper we introduce a python library - namely CDlib - designed to serve this need. The aim of CDlib is to allow easy and standardized access to a wide variety of network clustering algorithms, to evaluate and compare the results they provide, and to visualize them. It notably provides the largest available collection of community detection implementations, with a total of 39 algorithms.

83 citations

Journal ArticleDOI
TL;DR: This work represents complex information in a network as multiple latent labels, and postulates that edges in the networks are created among nodes carrying similar labels, so that it can be used on real-world scale networks.
Abstract: Community discovery in complex networks is the task of organizing a network’s structure by grouping together nodes related to each other. Traditional approaches are based on the assumption that there is a global-level organization in the network. However, in many scenarios, each node is the bearer of complex information and cannot be classified in disjoint clusters. The top-down global view of the partition approach is not designed for this. Here, we represent this complex information as multiple latent labels, and we postulate that edges in the networks are created among nodes carrying similar labels. The latent labels are the communities a node belongs to and we discover them with a simple local-first approach to community discovery. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, its ego neighborhood, using a label propagation algorithm, assuming that each node is aware of the label it shares with each of its connections. The local communities are merged hierarchically, unveiling the modular organization of the network at the global level and identifying overlapping groups and groups of groups. We tested this intuition against the state-of-the-art overlapping community discovery and found that our new method advances in the chosen scenarios in the quality of the obtained communities. We perform a test on benchmark and on real-world networks, evaluating the quality of the community coverage by using the extracted communities to predict the metadata attached to the nodes, which we consider external information about the latent labels. We also provide an explanation about why real-world networks contain overlapping communities and how our logic is able to capture them. Finally, we show how our method is deterministic, is incremental, and has a limited time complexity, so that it can be used on real-world scale networks.

76 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

01 Jan 2012

3,692 citations

Journal ArticleDOI
TL;DR: This work offers a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

2,669 citations

Journal ArticleDOI
TL;DR: In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications.
Abstract: In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others We also survey and discuss existing data sets that can be represented as multilayer networks We review attempts to generalize single-layer-network diagnostics to multilayer networks We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks We conclude with a summary and an outlook

1,934 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: CESNA as mentioned in this paper is an accurate and scalable algorithm for detecting overlapping communities in networks with node attributes, which leads to more accurate community detection as well as improved robustness in the presence of noise in the network structure.
Abstract: Community detection algorithms are fundamental tools that allow us to uncover organizational principles in networks. When detecting communities, there are two possible sources of information one can use: the network structure, and the features and attributes of nodes. Even though communities form around nodes that have common edges and common attributes, typically, algorithms have only focused on one of these two data modalities: community detection algorithms traditionally focus only on the network structure, while clustering algorithms mostly consider only node attributes. In this paper, we develop Communities from Edge Structure and Node Attributes (CESNA), an accurate and scalable algorithm for detecting overlapping communities in networks with node attributes. CESNA statistically models the interaction between the network structure and the node attributes, which leads to more accurate community detection as well as improved robustness in the presence of noise in the network structure. CESNA has a linear runtime in the network size and is able to process networks an order of magnitude larger than comparable approaches. Last, CESNA also helps with the interpretation of detected communities by finding relevant node attributes for each community.

664 citations