scispace - formally typeset
Search or ask a question
Author

Giulio Sandini

Other affiliations: IMEC, University of Geneva, University of Arizona  ...read more
Bio: Giulio Sandini is an academic researcher from Istituto Italiano di Tecnologia. The author has contributed to research in topics: Humanoid robot & iCub. The author has an hindex of 60, co-authored 433 publications receiving 14839 citations. Previous affiliations of Giulio Sandini include IMEC & University of Geneva.


Papers
More filters
Journal ArticleDOI
TL;DR: Tactile sensing, focused to fingertips and hands until past decade or so, has now been extended to whole body, even though many issues remain open, and various system issues that keep tactile sensing away from widespread utility are discussed.
Abstract: Starting from human ?sense of touch,? this paper reviews the state of tactile sensing in robotics. The physiology, coding, and transferring tactile data and perceptual importance of the ?sense of touch? in humans are discussed. Following this, a number of design hints derived for robotic tactile sensing are presented. Various technologies and transduction methods used to improve the touch sense capability of robots are presented. Tactile sensing, focused to fingertips and hands until past decade or so, has now been extended to whole body, even though many issues remain open. Trend and methods to develop tactile sensing arrays for various body sites are presented. Finally, various system issues that keep tactile sensing away from widespread utility are discussed.

1,414 citations

Journal ArticleDOI
TL;DR: This paper elucidates the main reasons and key motivations behind the convergence of fields with seemingly disparate interests, and shows why developmental robotics might prove to be beneficial for all fields involved.
Abstract: Developmental robotics is an emerging field located at the intersection of robotics, cognitive science and developmental sciences. This paper elucidates the main reasons and key motivations behind the convergence of fields with seemingly disparate interests, and shows why developmental robotics might prove to be beneficial for all fields involved. The methodology advocated is synthetic and two-pronged: on the one hand, it employs robots to instantiate models originating from developmental sciences; on the other hand, it aims to develop better robotic systems by exploiting insights gained from studies on ontogenetic development. This paper gives a survey of the relevant research issues and points to some future research directions.

625 citations

Proceedings ArticleDOI
19 Aug 2008
TL;DR: The iCub is a humanoid robot for research in embodied cognition that will be able to crawl on all fours and sit up to manipulate objects and its hands have been designed to support sophisticate manipulation skills.
Abstract: We report about the iCub, a humanoid robot for research in embodied cognition. At 104 cm tall, the iCub has the size of a three and half year old child. It will be able to crawl on all fours and sit up to manipulate objects. Its hands have been designed to support sophisticate manipulation skills. The iCub is distributed as Open Source following the GPL/FDL licenses. The entire design is available for download from the project homepage and repository (http://www.robotcub.org). In the following, we will concentrate on the description of the hardware and software systems. The scientific objectives of the project and its philosophical underpinning are described extensively elsewhere [1].

573 citations

Journal ArticleDOI
TL;DR: The iCub is described, which was designed to support collaborative research in cognitive development through autonomous exploration and social interaction and which has attracted a growing community of users and developers.

549 citations

Journal ArticleDOI
TL;DR: The authors showed that prior to 8 years of age, integration of visual and haptic spatial information is far from optimal, with either vision or touch dominating totally, even in conditions in which the dominant sense is far less precise than the other (assessed by discrimination thresholds).

430 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: These comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques the authors implemented.
Abstract: While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based, and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.

4,771 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: This paper presents a volumetric method for integrating range images that is able to integrate a large number of range images yielding seamless, high-detail models of up to 2.6 million triangles.
Abstract: A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scan-convert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a run-length encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the final manifold by extracting an isosurface from the volumetric grid. We show that under certain assumptions, this isosurface is optimal in the least squares sense. To fill gaps in the model, we tessellate over the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.

3,282 citations