scispace - formally typeset
Search or ask a question
Author

Giuseppe Coppola

Bio: Giuseppe Coppola is an academic researcher from National Research Council. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 40, co-authored 256 publications receiving 5489 citations. Previous affiliations of Giuseppe Coppola include Seconda Università degli Studi di Napoli & University of Naples Federico II.


Papers
More filters
Journal ArticleDOI
TL;DR: An approach is proposed for removing the wavefront curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes and it is shown that a correction effect can be obtained at all reconstruction planes.
Abstract: An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.

406 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an extended focused image of an object can be obtained through digital holography without any mechanical scanning or special optical components.
Abstract: In microscopy, high magnifications are achievable for investigating micro-objects but the paradigm is that higher is the required magnification, lower is the depth of focus. For an object having a three-dimensional (3D) complex shape only a portion of it appears in good focus to the observer who is essentially looking at a single image plane. Actually, two approaches exist to obtain an extended focused image, both having severe limitations since the first requires mechanical scanning while the other one requires specially designed optics. We demonstrate that an extended focused image of an object can be obtained through digital holography without any mechanical scanning or special optical components. The conceptual novelty of the proposed approach lies in the fact that it is possible to completely exploit the unique feature of DH in extracting all the information content stored in hologram, amplitude and phase, to extend the depth of focus.

268 citations

Journal ArticleDOI
TL;DR: A complete review of state-of-the-art holographic 3D particle-tracking methods and their applications in bio-microfluidics is provided.
Abstract: Particle tracking is a fundamental technique for investigating a variety of biophysical processes, from intracellular dynamics to the characterization of cell motility and migration. However, observing three-dimensional (3D) trajectories of particles is in general a challenging task in classical microscopy owing to the limited imaging depth of field of commercial optical microscopes, which represents a serious drawback for the analysis of time-lapse microscopy image data. Therefore, numerous automated particle-tracking approaches have been developed by many research groups around the world. Recently, digital holography (DH) in microscopy has rapidly gained credit as one of the elective techniques for these applications, mainly due to the uniqueness of the DH to provide a posteriori quantitative multiple refocusing capability and phase-contrast imaging. Starting from this paradigm, a huge amount of 3D holographic tracking approaches have been conceived and investigated for applications in various branches of science, including optofluids, microfluidics, biomedical microscopy, cell mechano-trasduction, and cell migration. Since a wider community of readers could be interested in such a review, i.e., not only scientists working in the fields of optics and photonics but also users of particle-tracking tools, it should be very beneficial to provide a complete review of state-of-the-art holographic 3D particle-tracking methods and their applications in bio-microfluidics.

262 citations

Journal ArticleDOI
TL;DR: A method for controlling the size of amplitude and phase images reconstructed from digital holograms by the Fresnel-transform method is proposed and demonstrated and solves the problem of superimposition in multiwavelength digital holography for color display and holographic interferometry applications.
Abstract: A method for controlling the size of amplitude and phase images reconstructed from digital holograms by the Fresnel-transform method is proposed and demonstrated. The method can provide a constant reconstruction pixel width in the reconstructed image plane, independent of the recording and reconstruction distance. The proposed method makes it possible to maintain the size of an object for a sequence of digital holograms recorded at different distances and, therefore, to subtract phase maps for an object recorded at different distances. Furthermore, the method solves the problem of superimposition in multiwavelength digital holography for color display and holographic interferometry applications.

245 citations

Journal ArticleDOI
TL;DR: Acute hyperglycemia increases circulating sICAM-1 levels in normal subjects, whereas the correction of hyperglyCEmia with insulin or l-arginine supplementation restored to normal levels the increased plasma sICam-1 Levels of type 2 diabetic patients.
Abstract: Background—We assessed the role of glucose and insulin in the regulation of circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) and vascular adhesion molecule-1 (sVCAM-1) in normal subjects and in patients with type 2 diabetes. Methods and Results—Plasma glucose concentrations were acutely raised in 10 normal subjects and 10 newly diagnosed, complication-free type 2 diabetic patients and maintained at 15 mmol/L for 2 hours. In normal subjects, plasma sICAM-1, but not sVCAM-1, levels rose significantly (P<0.01) at 1 hour and returned to basal values at 2 hours. In another study, octreotide was infused during the hyperglycemic clamp to block the release of endogenous insulin; this prevented the late fall of plasma sICAM-l levels observed in under control clamp conditions. The diabetic patients had plasma sICAM-1 levels significantly higher (P<0.01) than those of the control subjects; plasma sVCAM-1 levels were similar. Both sICAM-l and sVCAM-1 concentrations did not change significantl...

217 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations