scispace - formally typeset
Search or ask a question
Author

Giuseppe Coppola

Bio: Giuseppe Coppola is an academic researcher from National Research Council. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 40, co-authored 256 publications receiving 5489 citations. Previous affiliations of Giuseppe Coppola include Seconda Università degli Studi di Napoli & University of Naples Federico II.


Papers
More filters
Journal ArticleDOI
TL;DR: In-vitro-derived embryos are vulnerable to ploidy change compared to their in-vivo counterparts, and the application of ZOO-FISH to domestic animal embryos is an effective approach to study the chromosome complement of species for which DNA probes are unavailable.
Abstract: Causes of chromosomal differences such as mosaicism between embryos developed in vivo and in vitro may be resolved using animal models to compare embryos generated in vivo with those generated by different production systems. The aims of this study were: (1) to test a ZOO-FISH approach (using bovine painting probes) to detect abnormal chromosome make-up in the sheep embryo model, and (2) to examine the extent of chromosome deviation in sheep embryos derived in vivo and in vitro. Cytogenetic analysis was performed on day 6 in-vivo and in-vitro derived sheep embryos using commercially available bovine chromosome painting probes for sex chromosomes X–Y and autosomes 1–29. A total of 8631 interphase and metaphase nuclei were analyzed from 49 in-vitro-derived and 51 in-vivo-derived embryos. The extent of deviation from normal ovine chromosome make-up was higher (p < 0.05) in in-vitro-produced embryos relative to in-vivo-derived embryos (65.3% vs. 19.6% respectively) mainly due to diploid–polyploid mosaicism. Polyploid cells ranged from 3n to 8n with tetraploids most predominant among non-diploid cells. The proportions of polyploid cells per mixoploid embryo in in-vitro-produced embryos ranged from 1.4% to 30.3%, in contrast to less than 10% among the in-vivo-derived embryos. It was concluded that in-vitro-derived embryos are vulnerable to ploidy change compared to their in-vivo counterparts. The application of ZOO-FISH to domestic animal embryos is an effective approach to study the chromosome complement of species for which DNA probes are unavailable.

29 citations

Journal ArticleDOI
TL;DR: It is speculated that the rate of telomere erosion and incidence of chromosome abnormalities affects developmental potential of early embryos and may be potential predictors of developmental outcome.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication and characterization of a metal-semiconductor-metal photodetector operating at 1550nm and integrated into a silicon-on-insulator waveguide was reported.
Abstract: We report on the fabrication and characterization of a metal-semiconductor-metal photodetector operating at 1550 nm and integrated into a silicon-on-insulator waveguide. Detection uses internal photoemissions through a metal/Si interface. In particular, a small metal/Si contact layer directly deposited on the vertical output facet of the waveguide absorbs the incoming radiation confined into a rib waveguide. The device parameters for responsivity, dark current, and bandwidth take values 3.5 mA, 3.5 nA, and 1 GHz, respectively. The results obtained indicate device suitability in power monitoring and telecommunications applications.

29 citations

Journal ArticleDOI
TL;DR: In this article, a Mach-Zehnder electro-optic modulator based on a p-i-n configuration, operating at λ = 1.55 μm, has been fabricated at 170°C using the low cost technology of hydrogenated amorphous silicon (a-Si:H).
Abstract: A very simple and fast Mach­Zehnder electro-optic modulator based on a p-i-n configuration, operating at λ = 1.55 μm, has been fabricated at 170°C using the low cost technology of hydrogenated amorphous silicon (a-Si:H). In spite of the device simplicity, refractive index modulation was achieved through the free carrier dispersion effect resulting in characteristic rise and fall times of ~2.5 ns. By reverse biasing the p-i-n device, the voltage-length product was estimated to be Vπ∙Lπ = 40 V⋅cm both from static and dynamic measurements. Such bandwidth performance in as-deposited a-Si:H demonstrates the potential of this material for the fabrication of fast active photonic devices integrated on standard microelectronic substrates.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the Schottky graphene/silicon photodetectors that operate at a wavelength of 2 μm have been designed and characterized using electric and optical measurements over the temperature range from 280 to315 K.
Abstract: This paper presents the design, fabrication, and characterization of Schottky graphene/silicon photodetectors that operate at a wavelength of 2 μm. These graphene/silicon junctions are carefully characterized using electric and optical measurements over the temperature range from 280–315 K. The photodetectors show external responsivity of 0.16 mA/W at room temperature under zero bias conditions, which is in excellent agreement with the theoretical predictions. In addition, the device performance is discussed in terms of the noise equivalent power and operating bandwidth. To the best of our knowledge, these are the first Si-based photodetectors designed for operation in free space at 2 μm. The proposed devices will pave the way toward development of hybrid graphene-Si free-space illuminated photodetectors operating at 2 μm for applications including free-space optical communications, optical coherence tomography and light-based radar systems.

28 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations