scispace - formally typeset
Search or ask a question
Author

Giuseppe Coppola

Bio: Giuseppe Coppola is an academic researcher from National Research Council. The author has contributed to research in topics: Digital holography & Holography. The author has an hindex of 40, co-authored 256 publications receiving 5489 citations. Previous affiliations of Giuseppe Coppola include Seconda Università degli Studi di Napoli & University of Naples Federico II.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a near infrared all-silicon (all-Si) photodetector integrated into a silicon-on-insulator waveguide is demonstrated, based on the internal photoemission effect through a metal/Si Schottky junction placed transversally to the optical field confined into the waveguide.
Abstract: In this letter, a near infrared all-silicon (all-Si) photodetector integrated into a silicon-on-insulator waveguide is demonstrated. The device is based on the internal photoemission effect through a metal/Si Schottky junction placed transversally to the optical field confined into the waveguide. The technological steps utilized to fabricate the device allow an efficiently monolithic integration with complementary metal-oxide semiconductor compatible structures. Preliminary results show a responsivity of 0.08 mA/W at 1550 nm with a reverse bias of 1 V and an efficient behavior both in C and L band. Finally, an estimation of bandwidth for GHz range is deduced.

71 citations

Journal ArticleDOI
TL;DR: It is demonstrated that both proposed methods for in vitro bull sperm head morphometry analysis are efficient to skim the data set in a preselective analysis for discarding anomalous data.
Abstract: An investigation is reported of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps of biological cells by digital holographic microscopy. In particular, two different methods have been developed for in vitro bull sperm head morphometry analysis. We show that semen analysis can be accomplished by means of the proposed techniques . Extraction and measurement of various parameters are performed. It is demonstrated that both proposed methods are efficient to skim the data set in a preselective analysis for discarding anomalous data.

70 citations

Journal ArticleDOI
TL;DR: This paper investigates the use of a digital holographic microscope, with partial spatial coherent illumination, for the automated detection and tracking of spermatozoa and characterized cell motility on clinical samples of seminal fluid.
Abstract: In this paper we investigate the use of a digital holographic microscope, with partial spatial coherent illumination, for the automated detection and tracking of spermatozoa. This in vitro technique for the analysis of quantitative parameters is useful for assessment of semen quality. In fact, thanks to the capabilities of digital holography, the developed algorithm allows us to resolve in-focus amplitude and phase maps of the cells under study, independently of focal plane of the sample image. We have characterized cell motility on clinical samples of seminal fluid. In particular, anomalous sperm cells were characterized and the quantitative motility parameters were compared to those of normal sperm.

69 citations

Journal ArticleDOI
TL;DR: It is suggested that deficiencies in the levels of aerobic respiration can explain variability in the implantation potential of apparently equivalent embryos and that anaerobic respiration is not sufficient to substitute for aerobic resppiration over long periods.
Abstract: Human reproduction, like all biological systems, is characterised by a large level of variability. In this field, the variability is observed as a large difference in implantation potential of human embryos developing in vitro, despite similarities in observable parameters such as rate of development and morphology of these embryos. One of the underlying factors that determines developmental potential in these embryos is the availability of energy in the form of ATP for development. Here, we suggest that, despite the evidence suggesting that mitochondrial metabolism is relatively inactive during preimplantation embryo development, aerobic (mitochondrial) metabolism contributes a major role in the supply of ATP. A second pathway, anaerobic respiration, is also active and the two pathways work in synchrony to supply all the ATP necessary. We discuss the differences in the two forms of energy production and suggest that, although anaerobic respiration can supplement deficiencies in the energy supply in the short term, this is not sufficient to substitute for aerobic respiration over long periods. Therefore, we suggest that deficiencies in the levels of aerobic respiration can explain variability in the implantation potential of apparently equivalent embryos.

67 citations

Journal ArticleDOI
TL;DR: The evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs) is investigated, with an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM.
Abstract: In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.

64 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
TL;DR: The techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future are discussed.
Abstract: Optical technology is poised to revolutionize short-reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such an interconnect is the optical modulator. Modulators have been improved dramatically in recent years, with a notable increase in bandwidth from the megahertz to the multigigahertz regime in just over half a decade. However, the demands of optical interconnects are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics. Minimizing metrics such as the device footprint and energy requirement per bit, while also maximizing bandwidth and modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal tolerance and optical spectral width using CMOS-compatible fabrication processes. This Review discusses the techniques that have been (and will continue to be) used to implement silicon optical modulators, as well as providing an outlook for these devices and the candidate solutions of the future.

2,110 citations

Journal ArticleDOI
12 Feb 2004-Nature
TL;DR: An approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation is described and an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz is demonstrated.
Abstract: Silicon has long been the optimal material for electronics, but it is only relatively recently that it has been considered as a material option for photonics1. One of the key limitations for using silicon as a photonic material has been the relatively low speed of silicon optical modulators compared to those fabricated from III–V semiconductor compounds2,3,4,5,6 and/or electro-optic materials such as lithium niobate7,8,9. To date, the fastest silicon-waveguide-based optical modulator that has been demonstrated experimentally has a modulation frequency of only ∼20 MHz (refs 10, 11), although it has been predicted theoretically that a ∼1-GHz modulation frequency might be achievable in some device structures12,13. Here we describe an approach based on a metal–oxide–semiconductor (MOS) capacitor structure embedded in a silicon waveguide that can produce high-speed optical phase modulation: we demonstrate an all-silicon optical modulator with a modulation bandwidth exceeding 1 GHz. As this technology is compatible with conventional complementary MOS (CMOS) processing, monolithic integration of the silicon modulator with advanced electronics on a single silicon substrate becomes possible.

1,612 citations