scispace - formally typeset
Search or ask a question
Author

Giuseppe De Giacomo

Other affiliations: Rice University
Bio: Giuseppe De Giacomo is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Description logic & Decidability. The author has an hindex of 69, co-authored 355 publications receiving 17920 citations. Previous affiliations of Giuseppe De Giacomo include Rice University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that, for the DLs of the DL-Lite family, the usual DL reasoning tasks are polynomial in the size of the TBox, and query answering is LogSpace in thesize of the ABox, which is the first result ofPolynomial-time data complexity for query answering over DL knowledge bases.
Abstract: We propose a new family of description logics (DLs), called DL-Lite, specifically tailored to capture basic ontology languages, while keeping low complexity of reasoning. Reasoning here means not only computing subsumption between concepts and checking satisfiability of the whole knowledge base, but also answering complex queries (in particular, unions of conjunctive queries) over the instance level (ABox) of the DL knowledge base. We show that, for the DLs of the DL-Lite family, the usual DL reasoning tasks are polynomial in the size of the TBox, and query answering is LogSpace in the size of the ABox (i.e., in data complexity). To the best of our knowledge, this is the first result of polynomial-time data complexity for query answering over DL knowledge bases. Notably our logics allow for a separation between TBox and ABox reasoning during query evaluation: the part of the process requiring TBox reasoning is independent of the ABox, and the part of the process requiring access to the ABox can be carried out by an SQL engine, thus taking advantage of the query optimization strategies provided by current database management systems. Since even slight extensions to the logics of the DL-Lite family make query answering at least NLogSpace in data complexity, thus ruling out the possibility of using on-the-shelf relational technology for query processing, we can conclude that the logics of the DL-Lite family are the maximal DLs supporting efficient query answering over large amounts of instances.

1,482 citations

Book ChapterDOI
TL;DR: This paper presents a new ontology language, based on Description Logics, that is particularly suited to reason with large amounts of instances and a novel mapping language that is able to deal with the so-called impedance mismatch problem.
Abstract: Many organizations nowadays face the problem of accessing existing data sources by means of flexible mechanisms that are both powerful and efficient. Ontologies are widely considered as a suitable formal tool for sophisticated data access. The ontology expresses the domain of interest of the information system at a high level of abstraction, and the relationship between data at the sources and instances of concepts and roles in the ontology is expressed by means of mappings. In this paper we present a solution to the problem of designing effective systems for ontology-based data access. Our solution is based on three main ingredients. First, we present a new ontology language, based on Description Logics, that is particularly suited to reason with large amounts of instances. The second ingredient is a novel mapping language that is able to deal with the so-called impedance mismatch problem, i.e., the problem arising from the difference between the basic elements managed by the sources, namely data, and the elements managed by the ontology, namely objects. The third ingredient is the query answering method, that combines reasoning at the level of the ontology with specific mechanisms for both taking into account the mappings and efficiently accessing the data at the sources.

884 citations

Journal ArticleDOI
TL;DR: This work considers UML class diagrams, which are one of the most important components of UML, and addresses the problem of reasoning on such diagrams, using several results developed in the field of Knowledge Representation and Reasoning regarding Description Logics (DLs), a family of logics that admit decidable reasoning procedures.

591 citations

Journal ArticleDOI
TL;DR: A formal definition in the situation calculus of such a programming language is presented and illustrated with some examples that includes facilities for prioritizing the execution of concurrent processes, interrupting the execution when certain conditions become true, and dealing with exogenous actions.

563 citations

Proceedings Article
02 Jun 2006
TL;DR: In this article, the authors study the data complexity of answering conjunctive queries over Description Logic knowledge bases and show that the Description Logics of the DL-Lite family are the maximal logics that allow query answering over very large ABoxes.
Abstract: In this paper we study data complexity of answering conjunctive queries over Description Logic knowledge bases constituted by an ABox and a TBox. In particular, we are interested in characterizing the FOL-reducibility and the polynomial tractability boundaries of conjunctive query answering, depending on the expressive power of the Description Logic used to specify the knowledge base. FOL-reducibility means that query answering can be reduced to evaluating queries over the database corresponding to the ABox. Since first-order queries can be expressed in SQL, the importance of FOL-reducibility is that, when query answering enjoys this property, we can take advantage of Data Base Management System (DBMS) techniques for both representing data, i.e., ABox assertions, and answering queries via reformulation into SQL. What emerges from our complexity analysis is that the Description Logics of the DL-Lite family are the maximal logics allowing conjunctive query answering through standard database technology. In this sense, they are the first Description Logics specifically tailored for effective query answering over very large ABoxes.

446 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

01 Jan 2003

3,093 citations

Journal ArticleDOI
TL;DR: Pellet is the first sound and complete OWL-DL reasoner with extensive support for reasoning with individuals, user-defined datatypes, and debugging support for ontologies.

2,790 citations

Proceedings ArticleDOI
03 Jun 2002
TL;DR: The tutorial is focused on some of the theoretical issues that are relevant for data integration: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.
Abstract: Data integration is the problem of combining data residing at different sources, and providing the user with a unified view of these data. The problem of designing data integration systems is important in current real world applications, and is characterized by a number of issues that are interesting from a theoretical point of view. This document presents on overview of the material to be presented in a tutorial on data integration. The tutorial is focused on some of the theoretical issues that are relevant for data integration. Special attention will be devoted to the following aspects: modeling a data integration application, processing queries in data integration, dealing with inconsistent data sources, and reasoning on queries.

2,716 citations