scispace - formally typeset
Search or ask a question
Author

Giuseppe Iannaccone

Bio: Giuseppe Iannaccone is an academic researcher from University of Pisa. The author has contributed to research in topics: Field-effect transistor & Graphene. The author has an hindex of 45, co-authored 378 publications receiving 10498 citations. Previous affiliations of Giuseppe Iannaccone include Istituto Nazionale di Fisica Nucleare & National Research Council.


Papers
More filters
Proceedings ArticleDOI
27 Jul 2015
TL;DR: In this paper, the authors provide fabrication guidelines to obtain high efficient organic solar cells exploiting graphene as substitute to ITO transparent electrode, and show that an efficiency improvement in excess of 30% with respect to the reference cell is achievable.
Abstract: In this work, we provide fabrication guidelines to obtain high efficient organic solar cells exploiting graphene as substitute to ITO transparent electrode. The design is performed through multi-scale simulations, ranging from the atomistic level by means of ab-initio calculations of the contact, up to the device level through drift-diffusion models, including also excitonic transport. Optical modelling has also been performed in order to investigate enhancement of the solar cell efficiency through proper contact patterning. We will show that an efficiency improvement in excess of 30% with respect to the reference cell is achievable.
01 Jan 2000
TL;DR: In this paper, a Monte Carlo simulator of the electromigration process in polycrystalline metal stripes is presented, which includes the major role played by grain boundaries and by the current density redistribution within the stripe following void formation.
Abstract: We have developed a Monte Carlo simulator of the electromigration process in polycrystalline metal stripes. Stripes with different average grain size can be generated with Voronoi tesselation, and mapped onto a network of resistors. The proposed model includes the major role played by grain boundaries and by the current density redistribution within the stripe following void formation. Simulations of stripes with different grain sizes and different widths are shown, and a few expressions for the failure probability are compared on the basis of their capability of reproducing the experimental results. In addition, electromigration noise has been computed, recovering the characteristic 1/f ! (!!2) behaviour. The substantial qualitative agreement between our calculations and the experimental results is a convincing test of the capability of the model proposed to include the relevant physics.
Journal ArticleDOI
TL;DR: In this article, a simple analytical model is proposed to seamlessly cover the whole range of transport regimes in generic quasi-one dimensional field effect transistors, and apply it to silicon nanowire transistors.
Abstract: The intermediate transport regime in nanoscale transistors between the fully ballistic case and the quasi equilibrium case described by the drift-diffusion model is still an open modeling issue. Analytical approaches to the problem have been proposed, based on the introduction of a backscattering coefficient, or numerical approaches consisting in the MonteCarlo solution of the Boltzmann transport equation or in the introduction of dissipation in quantum transport descriptions. In this paper we propose a very simple analytical model to seamlessly cover the whole range of transport regimes in generic quasi-one dimensional field-effect transistors, and apply it to silicon nanowire transistors. The model is based on describing a generic transistor as a chain of ballistic nanowire transistors in series, or as the series of a ballistic transistor and a drift-diffusion transistor operating in the triode region. As an additional result, we find a relation between the mobility and the mean free path, that has deep consequences on the understanding of transport in nanoscale devices.
Journal ArticleDOI
TL;DR: In this paper, the main scattering mechanisms affecting mobility in graphene nanoribbons using detailed atomistic simulations are investigated, including carrier scattering due to acoustic and optical phonons, edge roughness, single defects, and ionized impurities.
Abstract: We have investigated the main scattering mechanisms affecting mobility in graphene nanoribbons using detailed atomistic simulations. We have considered carrier scattering due to acoustic and optical phonons, edge roughness, single defects, and ionized impurities, and we have defined a methodology based on simulations of statistically meaningful ensembles of nanoribbon segments. Edge disorder heavily affects mobility at room temperature in narrower nanoribbons, whereas charged impurities and phonons are hardly the limiting factors. Results are favorably compared to the few experiments available in the literature.
Journal ArticleDOI
TL;DR: In this paper, the effect of a finite temperature on the behavior of logic circuits based on the principle of Quantum Cellular Automata (QCA) and of ground state computation was investigated, focusing on the error probability for a wire of QCA cells that propagates a logic state.
Abstract: We investigate the effect of a finite temperature on the behavior of logic circuits based on the principle of Quantum Cellular Automata (QCA) and of ground state computation. In particular, we focus on the error probability for a wire of QCA cells that propagates a logic state. A numerical model and an analytical, more approximate, model are presented for the evaluation of the partition function of such a system and, consequently, of the desired probabilities. We compare the results of the two models, assessing the limits of validity of the analytical approach, and provide estimates for the maximum operating temperature.

Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
Jingsi Qiao1, Xianghua Kong1, Zhixin Hu1, Feng Yang1, Wei Ji1 
TL;DR: A detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) is presented to predict its electrical and optical properties, finding that the mobilities are hole-dominated, rather high and highly anisotropic.
Abstract: Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical properties. This system has a direct bandgap, tunable from 1.51 eV for a monolayer to 0.59 eV for a five-layer sample. We predict that the mobilities are hole-dominated, rather high and highly anisotropic. The monolayer is exceptional in having an extremely high hole mobility (of order 10,000 cm(2) V(-1) s(-1)) and anomalous elastic properties which reverse the anisotropy. Light absorption spectra indicate linear dichroism between perpendicular in-plane directions, which allows optical determination of the crystalline orientation and optical activation of the anisotropic transport properties. These results make few-layer BP a promising candidate for future electronics.

3,622 citations