scispace - formally typeset
Search or ask a question
Author

Giuseppe Orombelli

Other affiliations: University of Milano-Bicocca
Bio: Giuseppe Orombelli is an academic researcher from University of Milan. The author has contributed to research in topics: Glacier & Holocene. The author has an hindex of 15, co-authored 46 publications receiving 2831 citations. Previous affiliations of Giuseppe Orombelli include University of Milano-Bicocca.

Papers
More filters
Journal ArticleDOI
10 Jun 2004-Nature
TL;DR: The recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years is reported, suggesting that without human intervention, a climate similar to the present one would extend well into the future.
Abstract: The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago ( Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

1,995 citations

Journal ArticleDOI
01 Jan 1994-Geology
TL;DR: Penguins are sensitive indicators of the Antarctic climate and of the environmental parameters that limit their presence and distribution as discussed by the authors, and the authors of this paper use this information to evaluate the variations in their distribution in the past, in the absence of human-induced changes.
Abstract: Penguins are sensitive indicators of the Antarctic climate and of the environmental parameters that limit their presence and distribution Paleoenvironmental data, obtained from the study of abandoned penguin rookeries ( Pygoscelis adeliae ) along the Victoria Land coast in Antarctica, indicate 14C date of 11-13 ka for the oldest abandoned rookery and supply new information about the timing of glacier retreat in southern Victoria Land after the last glacial maximum The continuous presence of the Adelie penguins is documented from 7 ka According to our data, the limiting factors that control the presence of penguins along the coast of Victoria Land changed during the Holocene Whereas several colonies were occupied for very long periods, other sites were used for more or less extended periods and then abandoned The greatest diffusion of rookeries occurred between 3 and 4 ka, a period of particularly favorable environmental conditions that has never been repeated It was followed by a sudden decrease in the number of penguin rookeries shortly after 3 ka This event has been attributed to an increase of the sea-ice extension and may have been correlated to a worldwide phase of climate change near the Subboreal-Subatlantic boundary A minor phase of penguin reoccupation occurred locally in the eighth to fourteenth centuries (AD) Because the presence and number of penguins reflect the state of health of the Antarctic marine ecosystem, it is important to evaluate the variations in their distribution in the past, in the absence of human-induced changes

182 citations

Journal ArticleDOI
01 Nov 2005-Boreas
TL;DR: The Miage morainic amphitheatre (MMA) is composed of three subconcentric sets of c. 25 moraines and has been studied for two centuries as discussed by the authors.
Abstract: Holocene glacier variations pre-dating the Little Ice Age are poorly known in the western Alps. Studied for two centuries, the Miage morainic amphitheatre (MMA) is composed of three subconcentric sets of c. 25 moraines. Because of its location and of a dominant mode of morainic accretion, the MMA is a well-preserved marker of the glacier dynamics during the Neoglacial. Radiocarbon dates were obtained by digging and coring in intermorainic depressions of the MMA and through a deep core drilling in a dammed-lake infill (Combal); complementary data for the inner MMA were obtained by lichenometry and dendrochronology. Radiocarbon chronology shows that (i) the MMA not only pre-dates the Little Ice Age (LIA), but was built at least since 5029–4648 cal. yr BP (beginning of the Neoglacial); (ii) outer sets of moraines pre-date 2748–2362 cal. yr BP; (iii) the MMA dammed the Lake Combal from 4.8 to 1.5 cal. kyr BP, while lakes/ponds formed inside the moraines (e.g. from 2147–1928 to 1506–1295 cal. yr BP). The ‘Neoglacial model’ proposed here considers that the MMA formed during the whole Neoglacial by a succession of glacier advances at 4.8–4.6 cal. ky BP (early

93 citations

Journal ArticleDOI
TL;DR: The discovery of a prehistoric mummified corpse at the upper edge of the accumulation area of an alpine glacier, together with its unique set of artifacts, provided new information on glacier dimensions during the little-known phases of major glacier shrinkage that characterized the warmest parts of the Holocene as discussed by the authors.

91 citations

Journal ArticleDOI
TL;DR: More than 40 14C dates for raised beaches at Terra Nova Bay ranging from the present to 7505 ± 230 yr B.P. were obtained in two soil profiles as mentioned in this paper.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

Journal ArticleDOI
14 Dec 2007-Science
TL;DR: As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
Abstract: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

4,422 citations

Journal ArticleDOI
TL;DR: This work uses atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene, the current epoch in which humans and the authors' societies have become a global geophysical force.
Abstract: We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270-275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.

2,585 citations

Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is found that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v.
Abstract: Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.

1,977 citations

Journal ArticleDOI
10 Aug 2007-Science
TL;DR: It is suggested that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.
Abstract: A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ∼800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.

1,723 citations