Author
Giuseppe Palombella
Bio: Giuseppe Palombella is an academic researcher. The author has contributed to research in topics: Nuclear decommissioning & Tuned mass damper. The author has an hindex of 1, co-authored 1 publications receiving 23 citations.
Papers
More filters
TL;DR: In this article, the authors deal with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise towers subjected to seismic accelerations.
Abstract: This work deals with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise towers subjected to seismic accelerations. A stochastic approach is developed and the excitation is represented by a stationary filtered stochastic process. The effectiveness of the vibration control strategy is evaluated by expressing the objective function as the reduction factor of the structural response in terms of displacement and absolute acceleration. The mechanical characteristics of the tuned mass damper represent the design variables. Analyses of sensitivities are carried out by varying the input and structural parameters in order to assess the efficiency of the TMD strategy. Variations between two different criteria are also evaluated.
25 citations
TL;DR: In this article , the authors present the design and the simulation of laboratory tests on half-joints of reinforced concrete beams that will be developed at the Politecnico di Torino in a subsequent step of the present research.
Abstract: European countries are characterized by an extensive infrastructural network, mainly built around the 1960s and 1970s. In that period prefabrication processes were starting to gain ground, and one of the most spread and studied typologies of bridges was constituted by reinforced or prestressed concrete decks. Those structures have gone through years of service, which caused the inevitable degradation of the materials and relevant deterioration of structural elements. Moreover, the design and construction processes of that period have soon become obsolete, and the knowledge relative to the influence of detailing increased significantly. One particular element that has been commonly used has been the half-joint, which is easy to prefabricate and has a strategic impact. However, in recent years this solution is showing critical aptitudes in resisting structural degradation and material decay. In addition, structural health monitoring (SHM) strategies are gaining attention since they are a very useful tool for gathering information on the current state of the structure and then for evaluating intervention plans to improve safety. Indeed, existing bridges, despite their working age, are still crucial to the development and sustainability of community life, and their decommissioning would be an act of critical impact on the communities (e.g., economy, logistics, sustainability). This contribution presents the design and the simulation of laboratory tests on half-joints of reinforced concrete beams that will be developed at the Politecnico di Torino in a subsequent step of the present research. They are designed to test and compare different monitoring techniques along with different steel reinforcement configurations. Specifically, the first part of the manuscript focuses on a review of the literature regarding the design, strengthening, and monitoring of half-joints. Subsequently, the laboratory setup to test half-joints is presented along with the numerical simulation to support the experimental design. Laboratory tests will involve the use of monitoring systems to detect the local response of the system and also to propose new solutions specifically for this type of connection using emerging technologies. Numerical collapse simulations show the effect of different reinforcement configurations and the collapse behavior.
Cited by
More filters
TL;DR: The review clearly demonstrates that the TMDs have a potential for improving the wind and seismic behaviors of prototype civil structures and shows that the MTMDs and d-MTMDs are relatively more effective and robust, as reported.
Abstract: A state-of-the-art review on the response control of structures mainly using the passive tuned mass damper(s) (TMD/s) is presented. The review essentially focuses on the response control of wind- and earthquake-excited structures and covers theoretical backgrounds of the TMD and research developments therein. To put the TMD within a proper frame of reference, the study begins with a qualitative description and comparison of passive control systems for protecting structures subjected to wind-imparted forces and forces induced due to earthquake ground motions. A detailed literature review of the TMD is then provided with reference to both, the theoretical and experimental researches. Specifically, the review focuses on descriptions of the dynamic behavior and distinguishing features of various systems, viz. single TMD (STMD), multiple tuned mass dampers (MTMDs), and spatially distributed MTMDs (d-MTMD) which have been theoretically developed and experimentally tested both at the component level and through small-scale structural models. The review clearly demonstrates that the TMDs have a potential for improving the wind and seismic behaviors of prototype civil structures. In addition, the review shows that the MTMDs and d-MTMDs are relatively more effective and robust, as reported. The paper shows the scope of future research in development of time and frequency domain analyses of structures installed with the d-MTMDs duly considering uncertainties in the structural parameters and forcing functions. In addition, the consideration of nonlinearity in structural material and geometry is recommended for assessment of the performance of the STMD, MTMDs, or d-MTMDs.
263 citations
TL;DR: In this article, a more complete approach is proposed and then also TMD mass ratio is optimized, where all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it, and the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass.
Abstract: Tuned mass sampers (TMDs) are widely used strategies for vibration control in many engineering applications, so that many TMD optimization criteria have been proposed till now. However, they normally consider only TMD stiffness and damping as design variables and assume that the tuned mass is a pre-selected value. In this work a more complete approach is proposed and then also TMD mass ratio is optimized. A standard single degree of freedom system is investigated to evaluate TMD protection efficiency in case of excitation at the support. More precisely, this model is used to develop two different optimizations criteria which minimize the main system displacement or the inertial acceleration. Different environmental conditions described by various characterizations of the input, here modelled by a stationary filtered stochastic process, are considered. Results show that all solutions obtained considering also the mass of the TMD as design variable are more efficient if compared with those obtained without it. However, in many cases these solutions are inappropriate because the optimal TMD mass is greater than real admissible values in practical technical applications for civil and mechanical engineering. Anyway, one can deduce that there are some interesting indications for applications in some actual contexts. In fact, the results show that there are some ranges of environmental parameters ranges where results attained by the displacement criterion are compatible with real applications requiring some percent of main system mass. Finally, the present research gives promising indications for complete TMD optimization application in emerging technical contexts, as micromechanical devices and nano resonant beams.
109 citations
TL;DR: In this article, an optimal design of a piezoelectric coupled cantilever structure attached by a proof mass subjected to harmonic motions is developed to achieve efficient energy harvesting for applications in high-rise buildings.
Abstract: An optimal design of a piezoelectric coupled cantilever structure attached by a proof mass subjected to harmonic motions is developed to achieve efficient energy harvesting for applications in high-rise buildings. Energy harvesting is realized from the electromechanical coupling effect by the piezoelectric patch mounted on the cantilever. To describe the energy harvesting process, a mathematical model is developed to calculate the output electrical charge and the voltage from the piezoelectric patch. The corresponding efficiency of the energy harvesting by the piezoelectric coupled vibrating cantilever can then be obtained. The influence of the thickness ratio of the piezoelectric patch to the host beam, the length and location of the piezoelectric patch, the radius of the attached mass, and the excitation frequency of the harmonic motion on the energy harvesting efficiency is investigated for the optimal design. This research provides a new method for absorbing vibration energy of high-rise buildings subjected to harmonic motions such as wind loadings through a design of energy harvesting devices made of piezoelectric coupled cantilever structures.
66 citations
TL;DR: In this paper, a novel piezoelectric technology of harvesting energy from high-rise buildings is developed, which is also helpful to dissipate vibration of the building by the designed piezolectric harvester as a tuned mass damper.
Abstract: A novel piezoelectric technology of harvesting energy from high-rise buildings is developed. While being used to harness vibration energy of a building, the technology is also helpful to dissipate vibration of the building by the designed piezoelectric harvester as a tuned mass damper. The piezoelectric harvester device is made of two groups of series piezoelectric generators connected by a shared shaft. The shaft is driven by a linking rod hinged on a proof mass on the tip of a cantilever fixed on the roof of the building. The influences of some practical considerations, such as the mass ratio of the proof mass to the main structure, the ratios of the length and flexural rigidity of the cantilever to those of the main structure, on the root mean square (RMS) of the generated electric power and the energy harvesting efficiency of the piezoelectric harvester device are discussed. The research provides a new method for an efficient and practical energy harvesting from high-rise buildings by piezoelectric harvesters.
63 citations