scispace - formally typeset
Search or ask a question
Author

Glenn A. Fines

Bio: Glenn A. Fines is an academic researcher from University of Guelph. The author has contributed to research in topics: Urea & Urea transport. The author has an hindex of 1, co-authored 1 publications receiving 119 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes that a unique combination of active urea transport and modification of the phospholipid bilayer membrane is responsible for decreasing the gill permeability to urea and facilitating urea retention by the gills of Squalus acanthias.
Abstract: In elasmobranch fishes, urea occurs at high concentrations (350–600 mM) in the body fluids and tissues, where it plays an important role in osmoregulation. Retention of urea by the gill against thi...

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes.
Abstract: The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system Nevertheless, substantial questions about the evolution of these mechanisms and control remain

2,371 citations

Journal ArticleDOI
TL;DR: Fish have strategies to protect them from the ammonia pulse following feeding, and this also protects them from increases in external ammonia, as a result starved fish are more sensitive to external ammonia than fed fish.

856 citations

Journal ArticleDOI
TL;DR: This review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia across mitochondrial membranes, the blood–brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish.
Abstract: Many fishes are ammonotelic but some species can detoxify ammonia to glutamine or urea. Certain fish species can accumulate high levels of ammonia in the brain or defense against ammonia toxicity by enhancing the effectiveness of ammonia excretion through active NH4+ transport, manipulation of ambient pH, or reduction in ammonia permeability through the branchial and cutaneous epithelia. Recent reports on ammonia toxicity in mammalian brain reveal the importance of permeation of ammonia through the blood-brain barrier and passages of ammonia and water through transporters in the plasmalemma of brain cells. Additionally, brain ammonia toxicity could be related to the passage of glutamine through the mitochondrial membranes into the mitochondrial matrix. On the other hand, recent reports on ammonia excretion in fish confirm the involvement of Rhesus glycoproteins in the branchial and cutaneous epithelia. Therefore, this review focuses on both the earlier literature and the up-to-date information on the problems and mechanisms concerning the permeation of ammonia, as NH3, NH4+ or proton-neutral nitrogenous compounds, across mitochondrial membranes, the blood-brain barrier, the plasmalemma of neurons, and the branchial and cutaneous epithelia of fish. It also addresses how certain fishes with high ammonia tolerance defend against ammonia toxicity through the regulation of the permeation of ammonia and related nitrogenous compounds through various types of membranes. It is hoped that this review would revive the interests in investigations on the passage of ammonia through the mitochondrial membranes and the blood-brain barrier of ammonotelic fishes and fishes with high brain ammonia-tolerance, respectively.

317 citations