scispace - formally typeset
Search or ask a question
Author

Glenn Merrill-Skoloff

Other affiliations: Tufts University
Bio: Glenn Merrill-Skoloff is an academic researcher from Beth Israel Deaconess Medical Center. The author has contributed to research in topics: Thrombus & Platelet. The author has an hindex of 15, co-authored 24 publications receiving 3010 citations. Previous affiliations of Glenn Merrill-Skoloff include Tufts University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking by examining thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy.
Abstract: Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet-poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor- and PSGL-1-containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.

733 citations

Journal ArticleDOI
TL;DR: This system provides high-speed, near-simultaneous acquisition of images of multiple fluorescent probes and of a brightfield channel that observed platelet deposition, tissue factor accumulation and fibrin generation after laser-induced endothelial injury in a single developing thrombus.
Abstract: We have used confocal and widefield microscopy to image thrombus formation in real time in the microcirculation of a living mouse. This system provides high-speed, near-simultaneous acquisition of images of multiple fluorescent probes and of a brightfield channel. Vascular injury is induced with a laser focused through the microscope optics. We observed platelet deposition, tissue factor accumulation and fibrin generation after laser-induced endothelial injury in a single developing thrombus. The initiation of blood coagulation in vivo entailed the initial accumulation of tissue factor on the upstream and thrombus–vessel wall interface of the developing thrombus. Subsequently tissue factor was associated with the interior of the thrombus. Tissue factor was biologically active, and was associated with fibrin generation within the thrombus.

659 citations

Journal ArticleDOI
TL;DR: Kinetics are consistent with a model in which PSGL-1 is the predominant neutrophil P-selectin ligand but is not a required counterreceptor for E- selectin under in vivo physiological conditions, and indicate that PSGL -1 is required for the early inflammatory responses but not for E–selectin–mediated responses.
Abstract: P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin-like selectin counterreceptor that binds to P-selectin, E-selectin, and L-selectin. To determine its physiological role in cell adhesion as a mediator of leukocyte rolling and migration during inflammation, we prepared mice genetically deficient in PSGL-1 by targeted disruption of the PSGL-1 gene. The homozygous PSGL-1–deficient mouse was viable and fertile. The blood neutrophil count was modestly elevated. There was no evidence of spontaneous development of skin ulcerations or infections. Leukocyte infiltration in the chemical peritonitis model was significantly delayed. Leukocyte rolling in vivo, studied by intravital microscopy in postcapillary venules of the cremaster muscle, was markedly decreased 30 min after trauma in the PSGL-1–deficient mouse. In contrast, leukocyte rolling 2 h after tumor necrosis factor α stimulation was only modestly reduced, but blocking antibodies to E-selectin infused into the PSGL-1–deficient mouse almost completely eliminated leukocyte rolling. These results indicate that PSGL-1 is required for the early inflammatory responses but not for E-selectin–mediated responses. These kinetics are consistent with a model in which PSGL-1 is the predominant neutrophil P-selectin ligand but is not a required counterreceptor for E-selectin under in vivo physiological conditions.

343 citations

Journal ArticleDOI
15 Nov 2004-Blood
TL;DR: It is demonstrated that blood-borne TF associated with hematopoietic cell-derived microparticles contributes to thrombus propagation.

335 citations

Journal ArticleDOI
15 Jan 2006-Blood
TL;DR: Evidence is provided for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation by using intravital microscopy and laser-induced injury to cremaster muscle arterioles to show that thrombi formed in PECam-1-deficient mice were larger, formed more rapidly than in control mice, and were more stable.

191 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the current understanding of the physiological roles of EVs is provided, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia.
Abstract: In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

3,690 citations

Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
TL;DR: Current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications are summarized to contribute to the understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Abstract: Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.

1,699 citations

Journal ArticleDOI
TL;DR: The small vesicles shed from the surface of many cells upon stimulation, considered for a long time to be artefacts, are now recognized as specific structures that are distinct from the exosomes released upon exocytosis of multivesicular bodies.

1,673 citations

Journal ArticleDOI
TL;DR: This review is an account of recent advances in the understanding of the mechanisms of thrombus formation, with emphasis on two independent pathways: one involving primarily platelets and the other initiated by tissue factor.
Abstract: This review is an account of recent advances in our understanding of the mechanisms of thrombus formation, with emphasis on two independent pathways: one involving primarily platelets and the other initiated by tissue factor.

1,551 citations