scispace - formally typeset
Search or ask a question
Author

Glenn P. Gerber

Bio: Glenn P. Gerber is an academic researcher from University of Tennessee. The author has contributed to research in topics: Predation & Anolis. The author has an hindex of 1, co-authored 1 publications receiving 59 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The propensity for intraguild predation is asymmetrical in favor of introduced A. sagrei in Florida and Grand Cayman, however, further study is needed to determine the importance of intrag Guild predation under field conditions.
Abstract: Since its introduction, Anolis sagrei (Sauria: Polychrotidae) has been replacing native A. carolinensis in Florida and native A. conspersus in Grand Cayman Island as the common anole of urban environments and other open habitats. To assess the likelihood that predation of juvenile native anoles by A. sagrei adults is an important interaction in this process, the propensities for intraguild predation and cannibalism were assessed for A. sagrei and A. carolinensis in Florida and for A. sagrei and A. conspersus in Grand Cayman. Predation experiments were conducted in cages, using freshly captured lizards, in which adult males of each species were presented with conspecific and heterospecific juveniles. Adult A. sagrei were (1) significantly more likely to eat juveniles than were adult A. carolinensis or A. conspersus, and (2) significantly more likely to eat heterospecific than conspecific juveniles, whereas adult A. carolinensis and A. conspersus were not. Thus, the propensity for intraguild predation is asymmetrical in favor of introduced A. sagrei in Florida and Grand Cayman. Further study is needed, however, to determine the importance of intraguild predation under field conditions.

65 citations


Cited by
More filters
Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: It is shown that one key to invasion success may be the occurrence of multiple introductions that transform among- population variation in native ranges to within-population variation in introduced areas.
Abstract: A genetic paradox1,2 exists in invasion biology: how do introduced populations, whose genetic variation has probably been depleted by population bottlenecks, persist and adapt to new conditions? Lessons from conservation genetics show that reduced genetic variation due to genetic drift and founder effects limits the ability of a population to adapt, and small population size increases the risk of extinction1,3,4. Nonetheless, many introduced species experiencing these same conditions during initial introductions persist, expand their ranges, evolve rapidly and become invasive. To address this issue, we studied the brown anole, a worldwide invasive lizard. Genetic analyses indicate that at least eight introductions have occurred in Florida from across this lizard's native range, blending genetic variation from different geographic source populations and producing populations that contain substantially more, not less, genetic variation than native populations. Moreover, recently introduced brown anole populations around the world originate from Florida, and some have maintained these elevated levels of genetic variation. Here we show that one key to invasion success may be the occurrence of multiple introductions that transform among-population variation in native ranges to within-population variation in introduced areas. Furthermore, these genetically variable populations may be particularly potent sources for introductions elsewhere. The growing problem of invasive species introductions brings considerable economic and biological costs5,6. If these costs are to be mitigated, a greater understanding of the causes, progression and consequences of biological invasions is needed7.

1,014 citations

Journal ArticleDOI
31 Jul 2003-Nature
TL;DR: It is found that evolutionary divergence overcomes niche conservatism: closely relatedspecies are no more ecologically similar than expected by random divergence and some distantly related species are Ecologically similar, leading to a community in which the relationship between ecological similarity and phylogenetic relatedness is very weak.
Abstract: Niche conservatism--the tendency for closely related species to be ecologically similar--is widespread. However, most studies compare closely related taxa that occur in allopatry; in sympatry, the stabilizing forces that promote niche conservatism, and thus inhibit niche shifts, may be countered by natural selection favouring ecological divergence to minimize the intensity of interspecific interactions. Consequently, the relative importance of niche conservatism versus niche divergence in determining community structure has received little attention. Here, we examine a tropical lizard community in which species have a long evolutionary history of ecological interaction. We find that evolutionary divergence overcomes niche conservatism: closely related species are no more ecologically similar than expected by random divergence and some distantly related species are ecologically similar, leading to a community in which the relationship between ecological similarity and phylogenetic relatedness is very weak. Despite this lack of niche conservatism, the ecological structuring of the community has a phylogenetic component: niche complementarity only occurs among distantly related species, which suggests that the strength of ecological interactions among species may be related to phylogeny, but it is not necessarily the most closely related species that interact most strongly.

322 citations

Journal ArticleDOI
TL;DR: Small size seems to promote fast diversification of disparate body plans, and the absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche.
Abstract: Aim Body size is instrumental in influencing animal physiology, morphology, ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World-wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world’s lizard species. The body size‐frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non-aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk has been studied.

175 citations

Journal ArticleDOI
01 Nov 2007-Ecology
TL;DR: Results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data, and need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.
Abstract: Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.

148 citations

Journal ArticleDOI
TL;DR: Alien herpetofauna have a broad diversity of ecological and evolutionary impacts, involving seven mechanisms, and major research gaps remain in understanding community-level impacts, the risk posed by competition, determinants of predation impact, the relevance of genetic diversity to impacts, and how to predict impacts.
Abstract: Alien herpetofauna have a broad diversity of ecological and evolutionary impacts, involving seven mechanisms. Ecological impacts usually result from trophic disruptions and may be direct or indirect and top-down or bottom-up; they may vary in scale from single species to communities. A single species may impose impacts involving most or all of these categories. Evolutionary impacts most often result from hybridization and introgression but may include diverse changes in native fauna induced by selection. Impact magnitudes observed to date largely range from moderate to major, but massive impacts (including species extinction) are known for a handful of invasive species. Research remains skewed toward a small sample of all invaders, and major research gaps remain in understanding community-level impacts, the risk posed by competition, determinants of predation impact, the relevance of genetic diversity to impacts, and how to predict impacts.

135 citations