scispace - formally typeset
Search or ask a question
Author

Global Energy Assessment Writing Team

Bio: Global Energy Assessment Writing Team is an academic researcher. The author has contributed to research in topics: Environmental impact of the energy industry & Sustainable development. The author has an hindex of 1, co-authored 1 publications receiving 795 citations.

Papers
More filters
BookDOI
01 Oct 2012
TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
Abstract: The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy chalenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is a invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

812 citations


Cited by
More filters
Journal ArticleDOI
30 Jun 2016-Nature
TL;DR: Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
Abstract: The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

2,333 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential is presented in this article.
Abstract: Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.

1,938 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify potential global impacts of different negative emissions technologies on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application.
Abstract: To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

974 citations

Journal ArticleDOI
24 Mar 2017-Science
TL;DR: This work proposes framing the decarbonization challenge in terms of a global decadal roadmap based on a simple heuristic—a “carbon law”— of halving gross anthropogenic carbon-dioxide emissions every decade to lead to net-zero emissions around mid-century.
Abstract: Although the Paris Agreement's goals (1) are aligned with science (2) and can, in principle, be technically and economically achieved (3), alarming inconsistencies remain between science-based targets and national commitments. Despite progress during the 2016 Marrakech climate negotiations, long-term goals can be trumped by political short-termism. Following the Agreement, which became international law earlier than expected, several countries published mid-century decarbonization strategies, with more due soon. Model-based decarbonization assessments (4) and scenarios often struggle to capture transformative change and the dynamics associated with it: disruption, innovation, and nonlinear change in human behavior. For example, in just 2 years, China's coal use swung from 3.7% growth in 2013 to a decline of 3.7% in 2015 (5). To harness these dynamics and to calibrate for short-term realpolitik, we propose framing the decarbonization challenge in terms of a global decadal roadmap based on a simple heuristic—a “carbon law”—of halving gross anthropogenic carbon-dioxide (CO2) emissions every decade. Complemented by immediately instigated, scalable carbon removal and efforts to ramp down land-use CO2 emissions, this can lead to net-zero emissions around mid-century, a path necessary to limit warming to well below 2°C.

805 citations

Journal ArticleDOI
TL;DR: In this article, the authors look at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios.
Abstract: Energy systems models are important methods used to generate a range of insight and analysis on the supply and demand of energy. Developed over the second half of the twentieth century, they are now seeing increased relevance in the face of stringent climate policy, energy security and economic development concerns, and increasing challenges due to the changing nature of the twenty-first century energy system. In this paper, we look particularly at models relevant to national and international energy policy, grouping them into four categories: energy systems optimization models, energy systems simulation models, power systems and electricity market models, and qualitative and mixed-methods scenarios. We examine four challenges they face and the efforts being taken to address them: (1) resolving time and space, (2) balancing uncertainty and transparency, (3) addressing the growing complexity of the energy system, and (4) integrating human behavior and social risks and opportunities. In discussing these challenges, we present possible avenues for future research and make recommendations to ensure the continued relevance for energy systems models as important sources of information for policy-making.

781 citations