scispace - formally typeset
Search or ask a question
Author

Gokhan Sengul

Other affiliations: Hacettepe University
Bio: Gokhan Sengul is an academic researcher from Atılım University. The author has contributed to research in topics: Deep learning & Handwriting recognition. The author has an hindex of 7, co-authored 39 publications receiving 133 citations. Previous affiliations of Gokhan Sengul include Hacettepe University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm and it is suggested that this method may be used in EEG source localization applications in the human brain.
Abstract: In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject’s head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 μm accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

37 citations

Journal ArticleDOI
TL;DR: In this paper, a smart watch-based system was used to predict fall detection. But the accuracy of the fall detection was only 99.59% and 97.35% when considering only binary classification (falling vs all other activities), perfect accuracy was achieved when considering all activities.

21 citations

Journal ArticleDOI
TL;DR: A novel hybrid data fusion method to estimate three types of daily user activities using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone and the k-Nearest Neighbor and Support Vector Machine classifiers.
Abstract: New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN.

17 citations

Journal ArticleDOI
TL;DR: Comprehension and, consequently, memory are improved by these acts and gestures facilitate deep and long-lasting learning.
Abstract: Introduction Research studies have shown that individuals who make hand gestures learn better than the ones who do not (eg, Alibali & Goldin-Meadow, 1993; Broaders, Cook, Mitchell & Goldin-Meadow, 2007). For instance, when children use their hands while they are explaining how they solve mathematical equivalence problems (eg, 6 + 4 +5 = _ + 5), they perform better in post-tests (Broaders et al, 2007). Comprehension and, consequently, memory are improved by these acts (Stevanoni & Salmon, 2005). In addition, gestures facilitate deep and long-lasting learning (Cutica & Bucciarelli, 2008).

16 citations

Journal ArticleDOI
TL;DR: This study has developed a fully automatic system that uses the 3D anthropometric measurements of human subjects for gender detection and the maximum accuracy achieved is 96.77% for SVM with an MLP kernel function.
Abstract: Automatic gender detection is a process of determining the gender of a human according to the characteristic properties that represent the masculine and feminine attributes of a subject. Automatic gender detection is used in many areas such as customer behaviour analysis, robust security system construction, resource management, human-computer interaction, video games, mobile applications, neuro-marketing etc., in which manual gender detection may be not feasible. In this study, we have developed a fully automatic system that uses the 3D anthropometric measurements of human subjects for gender detection. A Kinect 3D camera was used to recognize the human posture, and body metrics are used as features for classification. To classify the gender, KNN, SVM classifiers and Neural Network were used with the parameters. A unique dataset gathered from 29 female and 31 male (a total of 60 people) participants was used in the experiment and the Leave One Out method was used as the cross-validation approach. The maximum accuracy achieved is 96.77% for SVM with an MLP kernel function.

12 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2001
TL;DR: A wide variety of media can be used in learning, including distance learning, such as print, lectures, conference sections, tutors, pictures, video, sound, and computers.
Abstract: A wide variety of media can be used in learning, including distance learning, such as print, lectures, conference sections, tutors, pictures, video, sound, and computers. Any one instance of distance learning will make choices among these media, perhaps using several.

2,940 citations

Journal ArticleDOI
TL;DR: The goal of the present paper is to contribute to the effective documentation and communication of advances by providing updated guidelines for conducting and reporting EEG/MEG studies, which include a checklist of key information recommended for inclusion in research reports on EEG/ MEG measures.
Abstract: Electromagnetic data collected using electroencephalography (EEG) and magnetoencephalography (MEG) are of central importance for psychophysiological research. The scope of concepts, methods, and instruments used by EEG/MEG researchers has dramatically increased and is expected to further increase in the future. Building on existing guideline publications, the goal of the present paper is to contribute to the effective documentation and communication of such advances by providing updated guidelines for conducting and reporting EEG/MEG studies. The guidelines also include a checklist of key information recommended for inclusion in research reports on EEG/MEG measures.

485 citations

Journal ArticleDOI
TL;DR: A vision-based system that employs a combined RGB and depth descriptor to classify hand gestures and is studied for a human-machine interface application in the car.
Abstract: In this paper, we develop a vision-based system that employs a combined RGB and depth descriptor to classify hand gestures. The method is studied for a human-machine interface application in the car. Two interconnected modules are employed: one that detects a hand in the region of interaction and performs user classification, and another that performs gesture recognition. The feasibility of the system is demonstrated using a challenging RGBD hand gesture data set collected under settings of common illumination variation and occlusion.

386 citations

Journal ArticleDOI
16 May 2020-Sensors
TL;DR: The current state-of-the-art, as well as trends and effective practices for the future of effective, accessible, and acceptable eldercare with technology are outlined.
Abstract: The increasing ageing global population is causing an upsurge in ailments related to old age, primarily dementia and Alzheimer’s disease, frailty, Parkinson’s, and cardiovascular disease, but also a general need for general eldercare as well as active and healthy ageing. In turn, there is a need for constant monitoring and assistance, intervention, and support, causing a considerable financial and human burden on individuals and their caregivers. Interconnected sensing technology, such as IoT wearables and devices, present a promising solution for objective, reliable, and remote monitoring, assessment, and support through ambient assisted living. This paper presents a review of such solutions including both earlier review studies and individual case studies, rapidly evolving in the last decade. In doing so, it examines and categorizes them according to common aspects of interest such as health focus, from specific ailments to general eldercare; IoT technologies, from wearables to smart home sensors; aims, from assessment to fall detection and indoor positioning to intervention; and experimental evaluation participants duration and outcome measures, from acceptability to accuracy. Statistics drawn from this categorization aim to outline the current state-of-the-art, as well as trends and effective practices for the future of effective, accessible, and acceptable eldercare with technology.

143 citations

Proceedings ArticleDOI
13 Apr 2018
TL;DR: This work considers the problem of pre-processing and supervised classification of white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a consecutive proposed deep learning framework and seeks to determine a fast, accurate mechanism for classification.
Abstract: This works gives an account of evaluation of white blood cell differential counts via computer aided diagnosis (CAD) system and hematology rules. Leukocytes, also called white blood cells (WBCs) play main role of the immune system. Leukocyte is responsible for phagocytosis and immunity and therefore in defense against infection involving the fatal diseases incidence and mortality related issues. Admittedly, microscopic examination of blood samples is a time consuming, expensive and error-prone task. A manual diagnosis would search for specific Leukocytes and number abnormalities in the blood slides while complete blood count (CBC) examination is performed. Complications may arise from the large number of varying samples including different types of Leukocytes, related sub-types and concentration in blood, which makes the analysis prone to human error. This process can be automated by computerized techniques which are more reliable and economical. In essence, we seek to determine a fast, accurate mechanism for classification and gather information about distribution of white blood evidences which may help to diagnose the degree of any abnormalities during CBC test. In this work, we consider the problem of pre-processing and supervised classification of white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a consecutive proposed deep learning framework. For first step, this research proposes three consecutive pre-processing calculations namely are color distortion; bounding box distortion (crop) and image flipping mirroring. In second phase, white blood cell recognition performed with hierarchy topological feature extraction using Inception and ResNet architectures. Finally, the results obtained from the preliminary analysis of cell classification with (11200) training samples and 1244 white blood cells evaluation data set are presented in confusion matrices and interpreted using accuracy rate, and false positive with the classification framework being validated with experiments conducted on poor quality blood images sized 320 × 240 pixels. The deferential outcomes in the challenging cell detection task, as shown in result section, indicate that there is a significant achievement in using Inception and ResNet architecture with proposed settings. Our framework detects on average 100% of the four main white blood cell types using ResNet V1 50 while also alternative promising result with 99.84% and 99.46% accuracy rate obtained with ResNet V1 152 and ResNet 101, respectively with 3000 epochs and fine-tuning all layers. Further statistical confusion matrix tests revealed that this work achieved 1, 0.9979, 0.9989 sensitivity values when area under the curve (AUC) scores above 1, 0.9992, 0.9833 on three proposed techniques. In addition, current work shows negligible and small false negative 0, 2, 1 and substantial false positive with 0, 0, 5 values in Leukocytes detection.

136 citations