scispace - formally typeset
Search or ask a question
Author

Gokul Iyer

Bio: Gokul Iyer is an academic researcher from Joint Global Change Research Institute. The author has contributed to research in topics: Climate change mitigation & Climate change. The author has an hindex of 22, co-authored 64 publications receiving 1986 citations. Previous affiliations of Gokul Iyer include University of Maryland, College Park & Pacific Northwest National Laboratory.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a multi-model study projects investment needs under countries' nationally determined contributions and in pathways consistent with achieving the 2°C and 1.5°C targets as well as certain SDGs, showing that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries' Nationally Determined Contributions.
Abstract: Low-carbon investments are necessary for driving the energy system transformation that is called for by both the Paris Agreement and Sustainable Development Goals. Improving understanding of the scale and nature of these investments under diverging technology and policy futures is therefore of great importance to decision makers. Here, using six global modelling frameworks, we show that the pronounced reallocation of the investment portfolio required to transform the energy system will not be initiated by the current suite of countries’ Nationally Determined Contributions. Charting a course toward ‘well below 2 °C’ instead sees low-carbon investments overtaking fossil investments globally by around 2025 or before and growing thereafter. Pursuing the 1.5 °C target demands a marked upscaling in low-carbon capital beyond that of a 2 °C-consistent future. Actions consistent with an energy transformation would increase the costs of achieving the goals of energy access and food security, but reduce the costs of achieving air-quality goals. The scale and nature of energy investments under diverging technology and policy futures is of great importance to decision makers. Here, a multi-model study projects investment needs under countries’ nationally determined contributions and in pathways consistent with achieving the 2 °C and 1.5 °C targets as well as certain SDGs.

358 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the determinants of these residual emissions, focusing on sector-level contributions, and show that even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850-1,150 GtCO2 during 2016-2100, despite carbon prices of US$130-420 per tCO2 by 2030.
Abstract: The Paris Agreement—which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C—has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850–1,150 GtCO2 during 2016–2100, despite carbon prices of US$130–420 per tCO2 by 2030. Thus, 640–950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160–330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.

331 citations

Journal ArticleDOI
04 Dec 2015-Science
TL;DR: It is important to understand what these INDCs collectively deliver in terms of how much do they reduce the probability of the highest levels of global mean surface temperature change and improve the odds of achieving the international goal of limiting temperature change to under 2°C relative to preindustrial levels.
Abstract: Current international climate negotiations seek to catalyze global emissions reductions through a system of nationally determined country-level emissions reduction targets that would be regularly updated. These “Intended Nationally Determined Contributions” (INDCs) would constitute the core of mitigation commitments under any agreement struck at the upcoming Paris Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) ( 1 ). With INDCs now reported from more than 150 countries and covering around 90% of global emissions, we can begin to assess the role of this round of INDCs in facilitating or frustrating achievement of longer-term climate goals. In this context, it is important to understand what these INDCs collectively deliver in terms of two objectives. First, how much do they reduce the probability of the highest levels of global mean surface temperature change? Second, how much do they improve the odds of achieving the international goal of limiting temperature change to under 2°C relative to preindustrial levels ( 2 )? Although much discussion has focused on the latter objective ( 3 – 5 ), the former is equally important when viewing climate mitigation from a risk-management perspective.

281 citations

Journal ArticleDOI
TL;DR: It is shown that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO 2 eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5‬C Paris goals, which shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.
Abstract: Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.

201 citations

Journal ArticleDOI
23 Apr 2021-Science
TL;DR: In this article, the authors conducted a multimodel study and found that the 1.5°C-consistent goal would require China to reduce its carbon emissions and energy consumption by more than 90 and 39%, respectively, compared with the "no policy" case.
Abstract: Given the increasing interest in keeping global warming below 1.5°C, a key question is what this would mean for China's emission pathway, energy restructuring, and decarbonization. By conducting a multimodel study, we find that the 1.5°C-consistent goal would require China to reduce its carbon emissions and energy consumption by more than 90 and 39%, respectively, compared with the "no policy" case. Negative emission technologies play an important role in achieving near-zero emissions, with captured carbon accounting on average for 20% of the total reductions in 2050. Our multimodel comparisons reveal large differences in necessary emission reductions across sectors, whereas what is consistent is that the power sector is required to achieve full decarbonization by 2050. The cross-model averages indicate that China's accumulated policy costs may amount to 2.8 to 5.7% of its gross domestic product by 2050, given the 1.5°C warming limit.

190 citations


Cited by
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
30 Jun 2016-Nature
TL;DR: Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
Abstract: The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

2,333 citations

01 Jan 2015

976 citations

Journal ArticleDOI
07 Nov 2019-Nature
TL;DR: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere, but barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.
Abstract: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways. Ten pathways for the utilization of carbon dioxide are reviewed, considering their potential scale, economics and barriers to implementation.

879 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explored nonlinear transitions in the Arctic feedbacks and their subsequent impacts on the global climate and economy under the Paris Agreement scenarios, and found an important contribution to warming which leads to additional economic losses from climate change.
Abstract: Arctic feedbacks accelerate climate change through carbon releases from thawing permafrost and higher solar absorption from reductions in the surface albedo, following loss of sea ice and land snow. Here, we include dynamic emulators of complex physical models in the integrated assessment model PAGE-ICE to explore nonlinear transitions in the Arctic feedbacks and their subsequent impacts on the global climate and economy under the Paris Agreement scenarios. The permafrost feedback is increasingly positive in warmer climates, while the albedo feedback weakens as the ice and snow melt. Combined, these two factors lead to significant increases in the mean discounted economic effect of climate change: +4.0% ($24.8 trillion) under the 1.5 °C scenario, +5.5% ($33.8 trillion) under the 2 °C scenario, and +4.8% ($66.9 trillion) under mitigation levels consistent with the current national pledges. Considering the nonlinear Arctic feedbacks makes the 1.5 °C target marginally more economically attractive than the 2 °C target, although both are statistically equivalent. Nonlinear transitions in permafrost carbon feedback and surface albedo feedback have largely been excluded from climate policy studies. Here the authors modelled the dynamics of the two nonlinear feedbacks and the associated uncertainty, and found an important contribution to warming which leads to additional economic losses from climate change.

782 citations