scispace - formally typeset
Search or ask a question
Author

Gonçalo R. Abecasis

Bio: Gonçalo R. Abecasis is an academic researcher from University of Michigan. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 179, co-authored 595 publications receiving 230323 citations. Previous affiliations of Gonçalo R. Abecasis include Johns Hopkins University School of Medicine & Wellcome Trust Centre for Human Genetics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry was conducted.
Abstract: High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future

728 citations

Journal ArticleDOI
06 Jul 2012-Science
TL;DR: It is concluded that because of rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk.
Abstract: Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (1 every 17 bases) and geographically localized, so that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. We conclude that because of rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk.

724 citations

Journal ArticleDOI
Inga Prokopenko1, Claudia Langenberg2, Jose C. Florez3, Jose C. Florez4, Richa Saxena4, Richa Saxena3, Nicole Soranzo5, Nicole Soranzo6, Gudmar Thorleifsson7, Ruth J. F. Loos2, Alisa K. Manning8, Anne U. Jackson9, Yurii S. Aulchenko10, Simon C. Potter6, Michael R. Erdos11, Serena Sanna, Jouke-Jan Hottenga12, Eleanor Wheeler6, Marika Kaakinen13, Valeriya Lyssenko14, Wei-Min Chen15, Kourosh R. Ahmadi5, Jacques S. Beckmann16, Jacques S. Beckmann17, Richard N. Bergman18, Murielle Bochud17, Lori L. Bonnycastle11, Thomas A. Buchanan18, Antonio Cao, Alessandra C. L. Cervino5, Lachlan J. M. Coin19, Francis S. Collins11, Laura Crisponi, Eco J. C. de Geus12, Abbas Dehghan10, Panos Deloukas6, Alex S. F. Doney20, Paul Elliott19, Nelson B. Freimer21, Vesela Gateva9, Christian Herder22, Albert Hofman10, Thomas Edward Hughes23, Sarah E. Hunt6, Thomas Illig, Michael Inouye6, Bo Isomaa, Toby Johnson17, Toby Johnson16, Toby Johnson24, Augustine Kong7, Maria Krestyaninova25, Johanna Kuusisto26, Markku Laakso26, Noha Lim27, Ulf Lindblad14, Cecilia M. Lindgren1, O. T. McCann6, Karen L. Mohlke28, Andrew D. Morris20, Silvia Naitza, Marco Orru, Colin N. A. Palmer20, Anneli Pouta29, Joshua C. Randall1, Wolfgang Rathmann22, Jouko Saramies, Paul Scheet9, Laura J. Scott9, Angelo Scuteri11, Stephen J. Sharp2, Eric J.G. Sijbrands10, Jan H. Smit30, Kijoung Song27, Valgerdur Steinthorsdottir7, Heather M. Stringham9, Tiinamaija Tuomi31, Jaakko Tuomilehto, André G. Uitterlinden10, Benjamin F. Voight3, Benjamin F. Voight4, Dawn M. Waterworth27, H-Erich Wichmann32, Gonneke Willemsen12, Jacqueline C.M. Witteman10, Xin Yuan27, Jing Hua Zhao2, Eleftheria Zeggini1, David Schlessinger11, Manjinder S. Sandhu2, Manjinder S. Sandhu33, Dorret I. Boomsma12, Manuela Uda, Tim D. Spector5, Brenda W.J.H. Penninx33, Brenda W.J.H. Penninx34, Brenda W.J.H. Penninx35, David Altshuler3, David Altshuler4, Peter Vollenweider17, Marjo-Riitta Järvelin19, Marjo-Riitta Järvelin13, Edward G. Lakatta11, Gérard Waeber17, Caroline S. Fox11, Caroline S. Fox36, Leena Peltonen6, Leena Peltonen37, Leif Groop14, Vincent Mooser27, L. Adrienne Cupples8, Unnur Thorsteinsdottir7, Unnur Thorsteinsdottir38, Michael Boehnke9, Inês Barroso6, Cornelia M. van Duijn10, Josée Dupuis8, Richard M. Watanabe18, Kari Stefansson7, Kari Stefansson38, Mark I. McCarthy39, Mark I. McCarthy1, Nicholas J. Wareham2, James B. Meigs3, Gonçalo R. Abecasis9 
TL;DR: Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten genome-wide association scans, and previous associations of fasting glucose with variants at the G6PC2 and GCK loci are confirmed.
Abstract: To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.

716 citations

01 Jan 2016
TL;DR: Large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes, but most fell within regions previously identified by genome-wide association studies.
Abstract: The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.

698 citations

Posted ContentDOI
Daniel Taliun1, Daniel N. Harris2, Michael D. Kessler2, Jedidiah Carlson1  +191 moreInstitutions (61)
06 Mar 2019-bioRxiv
TL;DR: The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation as well as resources and early insights from the sequence data.
Abstract: Summary paragraph The Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency

662 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

26,280 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations