scispace - formally typeset
Search or ask a question
Author

Gonçalo R. Abecasis

Bio: Gonçalo R. Abecasis is an academic researcher from University of Michigan. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 179, co-authored 595 publications receiving 230323 citations. Previous affiliations of Gonçalo R. Abecasis include Johns Hopkins University School of Medicine & Wellcome Trust Centre for Human Genetics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors show that common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes.
Abstract: Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.

110 citations

Journal ArticleDOI
TL;DR: Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation, and analysis combining nevus count and hair color GWAS results provide insights into the genetic architecture of melanoma.
Abstract: Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.

109 citations

Journal ArticleDOI
Pim van der Harst1, Jessica van Setten2, Niek Verweij1, Georg Vogler3  +182 moreInstitutions (54)
TL;DR: A genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry provides new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets.

109 citations

Journal ArticleDOI
TL;DR: The results suggest that additional unobserved polymorphisms have an effect on circulating ACE levels in Jamaican families and show that a variance components approach combined with structured, quantitative comparisons between families from different ethnic groups may be a useful strategy for helping to determine which, if any, variants in a small genomic region directly influence a quantitative trait.
Abstract: Circulating angiotensin I-converting enzyme (ACE) levels are influenced by a major quantitative trait locus (QTL) that maps to the ACE gene. Phylogenetic and measured haplotype analyses have suggested that the ACE-linked QTL lies downstream of a putative ancestral breakpoint located near to position 6435. However, strong linkage disequilibrium between markers in the 3' portion of the gene has prevented further resolution of the QTL in Caucasian subjects. We have examined 10 ACE gene polymorphisms in Afro-Caribbean families recruited in JAMAICA: Variance components analyses showed strong evidence of linkage and association to circulating ACE levels. When the linkage results were contrasted with those from a set of British Caucasian families, there was no evidence for heterogeneity between the samples. However, patterns of allelic association between the markers and circulating ACE levels differed significantly in the two data sets. In the British families, three markers [G2215A, Alu insertion/deletion and G2350A] were in complete disequilibrium with the ACE-linked QTL. In the Jamaican families, only marker G2350A showed strong but incomplete disequilibrium with the ACE-linked QTL. These results suggest that additional unobserved polymorphisms have an effect on circulating ACE levels in Jamaican families. Furthermore, our results show that a variance components approach combined with structured, quantitative comparisons between families from different ethnic groups may be a useful strategy for helping to determine which, if any, variants in a small genomic region directly influence a quantitative trait.

109 citations

Journal ArticleDOI
TL;DR: For most realistic settings, it is found that regressing the phenotype on the estimated allelic or genotypic dosage provides an attractive compromise between accuracy and computational tractability.
Abstract: The availability of extensively genotyped reference samples, such as ‘‘The HapMap’’ and 1,000 Genomes Project reference panels, together with advances in statistical methodology, have allowed for the imputation of genotypes at single nucleotide polymorphism (SNP) markers that are untyped in a cohort or case-control study. These imputation procedures facilitate the interpretation and meta-analyses of genome-wide association studies. A natural question when implementing these procedures concerns how best to take into account uncertainty in imputed genotypes. Here we compare the performance of the following three strategies: least-squares regression on the ‘‘best-guess’’ imputed genotype; regression on the expected genotype score or ‘‘dosage’’; and mixture regression models that more fully incorporate posterior probabilities of genotypes at untyped SNPs. Using simulation, we considered a range of sample sizes, minor allele frequencies, and imputation accuracies to compare the performance of the different methods under various genetic models. The mixture models performed the best in the setting of a large genetic effect and low imputation accuracies. However, for most realistic settings, we find that regressing the phenotype on the estimated allelic or genotypic dosage provides an attractive compromise between accuracy and computational tractability. Genet. Epidemiol. 35:102–110, 2011. r 2011 Wiley-Liss, Inc.

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

26,280 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations