scispace - formally typeset
Search or ask a question
Author

Gong Bing

Bio: Gong Bing is an academic researcher from Technical University of Madrid. The author has contributed to research in topics: Rare events. The author has an hindex of 1, co-authored 1 publications receiving 902 citations.
Topics: Rare events

Papers
More filters
Journal ArticleDOI
TL;DR: An in depth review of rare event detection from an imbalanced learning perspective and a comprehensive taxonomy of the existing application domains of im balanced learning are provided.
Abstract: 527 articles related to imbalanced data and rare events are reviewed.Viewing reviewed papers from both technical and practical perspectives.Summarizing existing methods and corresponding statistics by a new taxonomy idea.Categorizing 162 application papers into 13 domains and giving introduction.Some opening questions are discussed at the end of this manuscript. Rare events, especially those that could potentially negatively impact society, often require humans decision-making responses. Detecting rare events can be viewed as a prediction task in data mining and machine learning communities. As these events are rarely observed in daily life, the prediction task suffers from a lack of balanced data. In this paper, we provide an in depth review of rare event detection from an imbalanced learning perspective. Five hundred and seventeen related papers that have been published in the past decade were collected for the study. The initial statistics suggested that rare events detection and imbalanced learning are concerned across a wide range of research areas from management science to engineering. We reviewed all collected papers from both a technical and a practical point of view. Modeling methods discussed include techniques such as data preprocessing, classification algorithms and model evaluation. For applications, we first provide a comprehensive taxonomy of the existing application domains of imbalanced learning, and then we detail the applications for each category. Finally, some suggestions from the reviewed papers are incorporated with our experiences and judgments to offer further research directions for the imbalanced learning and rare event detection fields.

1,448 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The effect of class imbalance on classification performance is detrimental; the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; and thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.

1,777 citations

Journal ArticleDOI
TL;DR: The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered "de facto" standard in the framework of learning from imbalanced data because of its simplicity in the design, as well as its robustness when applied to different type of problems.
Abstract: The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered "de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to different type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several different domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also significantly contributed to new supervised learning paradigms, including multilabel classification, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of different software packages -- from open source to commercial. In this paper, marking the fifteen year anniversary of SMOTE, we reect on the SMOTE journey, discuss the current state of affairs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.

905 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of 154 studies that apply deep learning to EEG, published between 2010 and 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring.
Abstract: Context Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.

699 citations

Journal ArticleDOI
TL;DR: This analysis is written with the dual aim of helping clinical safety professionals to critically appraise current medical AI research from a quality and safety perspective, and supporting research and development in AI by highlighting some of the clinical safety questions that must be considered if medical application of these exciting technologies is to be successful.
Abstract: In medicine, artificial intelligence (AI) research is becoming increasingly focused on applying machine learning (ML) techniques to complex problems, and so allowing computers to make predictions from large amounts of patient data, by learning their own associations.1 Estimates of the impact of AI on the wider economy globally vary wildly, with a recent report suggesting a 14% effect on global gross domestic product by 2030, half of which coming from productivity improvements.2 These predictions create political appetite for the rapid development of the AI industry,3 and healthcare is a priority area where this technology has yet to be exploited.2 3 The digital health revolution described by Duggal et al 4 is already in full swing with the potential to ‘disrupt’ healthcare. Health AI research has demonstrated some impressive results,5–10 but its clinical value has not yet been realised, hindered partly by a lack of a clear understanding of how to quantify benefit or ensure patient safety, and increasing concerns about the ethical and medico-legal impact.11 This analysis is written with the dual aim of helping clinical safety professionals to critically appraise current medical AI research from a quality and safety perspective, and supporting research and development in AI by highlighting some of the clinical safety questions that must be considered if medical application of these exciting technologies is to be successful. Clinical decision support systems (DSS) are in widespread use in medicine and have had most impact providing guidance on the safe prescription of medicines,12 guideline adherence, simple risk screening13 or prognostic scoring.14 These systems use predefined rules, which have predictable behaviour and are usually shown to reduce clinical error,12 although sometimes inadvertently introduce safety issues themselves.15 16 Rules-based systems have also been developed to address diagnostic uncertainty17–19 …

439 citations