scispace - formally typeset
Search or ask a question
Author

Gongjian Wen

Bio: Gongjian Wen is an academic researcher from National University of Defense Technology. The author has contributed to research in topics: Synthetic aperture radar & Automatic target recognition. The author has an hindex of 14, co-authored 72 publications receiving 789 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A statistics-based distance measure is designed to evaluate the distance between individual ASCs and the Hungarian algorithm is employed to build a one-to-one correspondence between two ASC sets, providing a reliable and robust similarity measure for SAR ATR.
Abstract: This paper presents an approach for attributed scattering center (ASC) matching with application to synthetic aperture radar (SAR) automatic target recognition (ATR). A statistics-based distance measure is designed to evaluate the distance between individual ASCs. Afterwards, the Hungarian algorithm is employed to build a one-to-one correspondence between two ASC sets. Based on the correspondence, a global similarity and a local similarity are designed to comprehensively evaluate the global consistency and structural correlation between those two ASC sets. The two similarities comprehensively exploit the inner correlation between the two ASC sets, thus providing a reliable and robust similarity measure for SAR ATR. The two similarities are then fused based on the Dempster–Shafer evidence theory to determine the target type by the maximum belief rule. Extensive experiments conducted on the moving and stationary target acquisition and recognition dataset and the comparison with several state-of-the-art methods demonstrate the validity and robustness of the proposed method.

129 citations

Journal ArticleDOI
TL;DR: A robust similarity measure for two attributed scattering center (ASC) sets and applies it to synthetic aperture radar (SAR) automatic target recognition (ATR) and Experimental results on the moving and stationary target acquisition and recognition (MSTAR) dataset verify the validity and robustness of the proposed method.

91 citations

Journal ArticleDOI
TL;DR: The quality of synthetic aperture radar (SAR) images and the completeness of the template database are two important factors in template-based SAR automatic target recognition are given by multilevel reconstruction of SAR targets using attributed scattering centers (ASCs).
Abstract: The quality of synthetic aperture radar (SAR) images and the completeness of the template database are two important factors in template-based SAR automatic target recognition. This letter gives a solution to the two factors by multilevel reconstruction of SAR targets using attributed scattering centers (ASCs). The ASCs of original SAR images are extracted to reconstruct the target’s image, which not only reduces the noise and background clutters but also keeps the electromagnetic characteristics of the target. Template database are reconstructed at multilevels to simulate various extents of ASC absence in the extended operation conditions. Therefore, the quality of SAR images as well as the completeness of the template database is augmented. Features are extracted from the augmented SAR images, and the classifier is trained by the augmented database for target recognition. Experimental results on the moving and stationary target acquisition and recognition data set demonstrate the validity of the proposed method.

68 citations

Journal ArticleDOI
TL;DR: This paper uses the binary target region as the feature and proposes a matching scheme for the target regions using binary morphological operations and employs a Bayesian decision fusion to fuse the similarities gained by different structuring elements to further enhance the recognition performance.
Abstract: Feature extraction and matching are two important steps in synthetic aperture radar automatic target recognition. This paper uses the binary target region as the feature and proposes a matching scheme for the target regions using binary morphological operations. The residuals between the testing target region and its corresponding template target regions are processed by the morphological opening operation. Then, a similarity measure is defined based on the residual remains to evaluate the similarities between different targets. Afterward, a Bayesian decision fusion is employed to fuse the similarities gained by different structuring elements to further enhance the recognition performance. The nonlinearity of the opening operation as well as the Bayesian decision fusion makes the proposed method robust to the nonlinear deformations of the target region. Experimental results on the moving and stationary target acquisition and recognition dataset demonstrate the validity of the proposed method.

66 citations

Journal ArticleDOI
TL;DR: By the hierarchical fusion strategy, the efficiency of global features and the robustness of local descriptors to various EOCs can be maintained jointly in the ATR system.
Abstract: Automatic target recognition (ATR) of synthetic aperture radar (SAR) images is performed on either global or local features. The global features can be extracted and classified with high efficiency. However, they lack the reasoning capability thus can hardly work well under the extended operation conditions (EOCs). The local features are often more difficult to extract and classify but they provide reasoning capability for EOC target recognition. To combine the efficiency and robustness in an ATR system, a hierarchical fusion of the global and local features is proposed for SAR ATR in this paper. As the global features, the random projection features can be efficiently extracted and effectively classified by sparse representation-based classification (SRC). The physically relevant local descriptors, i.e., attributed scattering centers (ASCs), are employed for local reasoning to handle various EOCs like noise corruption, resolution variance, and partial occlusion. A one-to-one correspondence between the test and template ASC sets is built by the Hungarian algorithm. Then, the local reasoning is performed by evaluating individual matched pairs as well as the false alarms and missing alarms. For the test image to be recognized, it is first classified by the global classifier, i.e., SRC. Once a reliable decision is made, the whole recognition process terminates. When the decision is not reliable enough, it is passed to the local classifier, where a further classification by ASC matching is carried out. Therefore, by the hierarchical fusion strategy, the efficiency of global features and the robustness of local descriptors to various EOCs can be maintained jointly in the ATR system. Extensive experiments on the moving and stationary target acquisition and recognition data set demonstrate that the proposed method achieves superior effectiveness and robustness under both SOC and typical EOCs, i.e., noise corruption, resolution variance, and partial occlusion, compared with some other SAR ATR methods.

46 citations


Cited by
More filters
01 Jan 2016
TL;DR: The linear and nonlinear programming is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading linear and nonlinear programming. As you may know, people have search numerous times for their favorite novels like this linear and nonlinear programming, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some infectious bugs inside their desktop computer. linear and nonlinear programming is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the linear and nonlinear programming is universally compatible with any devices to read.

943 citations

Posted Content
TL;DR: This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019), and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Abstract: Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

802 citations

Journal ArticleDOI
TL;DR: This paper proposes a unified and effective method for simultaneously detecting multi-class objects in remote sensing images with large scales variability, and shows that the method is more accurate than existing algorithms and is effective for multi-modalRemote sensing images.
Abstract: Automatic detection of multi-class objects in remote sensing images is a fundamental but challenging problem faced for remote sensing image analysis. Traditional methods are based on hand-crafted or shallow-learning-based features with limited representation power. Recently, deep learning algorithms, especially Faster region based convolutional neural networks (FRCN), has shown their much stronger detection power in computer vision field. However, several challenges limit the applications of FRCN in multi-class objects detection from remote sensing images: (1) Objects often appear at very different scales in remote sensing images, and FRCN with a fixed receptive field cannot match the scale variability of different objects; (2) Objects in large-scale remote sensing images are relatively small in size and densely peaked, and FRCN has poor localization performance with small objects; (3) Manual annotation is generally expensive and the available manual annotation of objects for training FRCN are not sufficient in number. To address these problems, this paper proposes a unified and effective method for simultaneously detecting multi-class objects in remote sensing images with large scales variability. Firstly, we redesign the feature extractor by adopting Concatenated ReLU and Inception module, which can increases the variety of receptive field size. Then, the detection is preformed by two sub-networks: a multi-scale object proposal network (MS-OPN) for object-like region generation from several intermediate layers, whose receptive fields match different object scales, and an accurate object detection network (AODN) for object detection based on fused feature maps, which combines several feature maps that enables small and densely packed objects to produce stronger response. For large-scale remote sensing images with limited manual annotations, we use cropped image blocks for training and augment them with re-scalings and rotations. The quantitative comparison results on the challenging NWPU VHR-10 data set, aircraft data set, Aerial-Vehicle data set and SAR-Ship data set show that our method is more accurate than existing algorithms and is effective for multi-modal remote sensing images.

327 citations

Book ChapterDOI
TL;DR: The siamese neural network architecture is described, and its main applications in a number of computational fields since its appearance in 1994 are outlined, including the programming languages, software packages, tutorials, and guides that can be practically used by readers to implement this powerful machine learning model.
Abstract: Similarity has always been a key aspect in computer science and statistics. Any time two element vectors are compared, many different similarity approaches can be used, depending on the final goal of the comparison (Euclidean distance, Pearson correlation coefficient, Spearman's rank correlation coefficient, and others). But if the comparison has to be applied to more complex data samples, with features having different dimensionality and types which might need compression before processing, these measures would be unsuitable. In these cases, a siamese neural network may be the best choice: it consists of two identical artificial neural networks each capable of learning the hidden representation of an input vector. The two neural networks are both feedforward perceptrons, and employ error back-propagation during training; they work parallelly in tandem and compare their outputs at the end, usually through a cosine distance. The output generated by a siamese neural network execution can be considered the semantic similarity between the projected representation of the two input vectors. In this overview we first describe the siamese neural network architecture, and then we outline its main applications in a number of computational fields since its appearance in 1994. Additionally, we list the programming languages, software packages, tutorials, and guides that can be practically used by readers to implement this powerful machine learning model.

281 citations