scispace - formally typeset
Search or ask a question
Author

Gonzalo Usaj

Bio: Gonzalo Usaj is an academic researcher from National University of Cuyo. The author has contributed to research in topics: Spin–orbit interaction & Mesoscopic physics. The author has an hindex of 25, co-authored 84 publications receiving 2362 citations. Previous affiliations of Gonzalo Usaj include Duke University & Balseiro Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyzed how topologically protected edge states arise inside these gaps in the presence of an edge and presented both analytical and numerical calculations that fully characterize these states.
Abstract: In the presence of a circularly polarized mid-infrared radiation graphene develops dynamical band gaps in its quasienergy band structure and becomes a Floquet insulator. Here, we analyze how topologically protected edge states arise inside these gaps in the presence of an edge. Our results show that the gap appearing at $\ensuremath{\hbar}\ensuremath{\Omega}/2$, where $\ensuremath{\hbar}\ensuremath{\Omega}$ is the photon energy, is bridged by two chiral edge states whose propagation direction is set by the direction of the polarization of the radiation field. Therefore, both the propagation direction and the energy window where the states appear can be controlled externally. We present both analytical and numerical calculations that fully characterize these states. This is complemented by simple topological arguments that account for them and by numerical calculations for the case of the semi-infinite sample, thereby eliminating finite-size effects.

271 citations

Journal ArticleDOI
TL;DR: In this article, the emergence of laser-induced chiral edge states in graphene ribbons is reported, which can be used for realizing nonequilibrium topological states with striking tunability.
Abstract: We report on the emergence of laser-induced chiral edge states in graphene ribbons. Insights on the nature of these Floquet states is provided by an analytical solution which is complemented with numerical simulations of the transport properties. Guided by these results we show that graphene can be used for realizing nonequilibrium topological states with striking tunability: while the laser intensity can be used to control their velocity and decay length, changing the laser polarization switches their propagation direction.

260 citations

Journal ArticleDOI
TL;DR: The results reveal that laser-induced edge states lead to quantum Hall plateaus once imperfect matching with the nonilluminated leads is lessened, and the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full Floquet bands.
Abstract: We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states lead to quantum Hall plateaus once imperfect matching with the nonilluminated leads is lessened. The magnitude of the Hall plateaus, however, is not directly related to the number and chirality of all the edge states at a given energy, as usual. Instead, the plateaus are dominated by those edge states adding to the time-averaged density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full Floquet bands.

197 citations

Journal ArticleDOI
TL;DR: It is shown that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes, and the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.
Abstract: We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.

130 citations

Journal ArticleDOI
TL;DR: Piskunow et al. as mentioned in this paper, Pablo Matias, Perez Piskunows, Pablo Matías Consejo Nacional de Investigaciones Cientificas and Tecnicas Centro Cientícios Tecnologico Conicet - Cordoba Instituto de Fisica Enrique Gaviola.
Abstract: Fil: Perez Piskunow, Pablo Matias Consejo Nacional de Investigaciones Cientificas y Tecnicas Centro Cientifico Tecnologico Conicet - Cordoba Instituto de Fisica Enrique Gaviola Universidad Nacional de Cordoba Instituto de Fisica Enrique Gaviola; Argentina

119 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that many of the symptoms of classicality can be induced in quantum systems by their environments, which leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information.
Abstract: as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ''Schrodinger-cat states.'' The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information that has predictive power. When the measured quantum system is microscopic and isolated, this restriction on the predictive utility of its correlations with the macroscopic apparatus results in the effective ''collapse of the wave packet.'' The existential interpretation implied by einselection regards observers as open quantum systems, distinguished only by their ability to acquire, store, and process information. Spreading of the correlations with the effectively classical pointer states throughout the environment allows one to understand ''classical reality'' as a property based on the relatively objective existence of the einselected states. Effectively classical pointer states can be ''found out'' without being re-prepared, e.g, by intercepting the information already present in the environment. The redundancy of the records of pointer states in the environment (which can be thought of as their ''fitness'' in the Darwinian sense) is a measure of their classicality. A new symmetry appears in this setting. Environment-assisted invariance or envariance sheds new light on the nature of ignorance of the state of the system due to quantum correlations with the environment and leads to Born's rules and to reduced density matrices, ultimately justifying basic principles of the program of decoherence and einselection.

3,499 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
TL;DR: The experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene are reviewed.
Abstract: The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material, as well as graphene-based spintronic devices Here we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including topological states and proximity-induced phenomena in graphene and other 2D materials

1,329 citations

01 Jan 2016
TL;DR: The electronic transport in mesoscopic systems is universally compatible with any devices to read, and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading electronic transport in mesoscopic systems. Maybe you have knowledge that, people have look numerous times for their favorite readings like this electronic transport in mesoscopic systems, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their computer. electronic transport in mesoscopic systems is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the electronic transport in mesoscopic systems is universally compatible with any devices to read.

1,220 citations