scispace - formally typeset
Search or ask a question
Author

Gordon D. Rubenfeld

Bio: Gordon D. Rubenfeld is an academic researcher from University of Washington. The author has contributed to research in topics: Intensive care & Lung injury. The author has an hindex of 44, co-authored 99 publications receiving 11424 citations. Previous affiliations of Gordon D. Rubenfeld include University of California, San Francisco & Harborview Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: It is estimated that each year in the United States there are 190,600 cases of acute lung injury, which are associated with 74,500 deaths and 3.6 million hospital days, considerably higher than previous reports have suggested.
Abstract: BACKGROUND Acute lung injury is a critical illness syndrome consisting of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that are not attributed to left atrial hypertension. Despite recent advances in our understanding of the mechanism and treatment of acute lung injury, its incidence and outcomes in the United States have been unclear. METHODS We conducted a prospective, population-based, cohort study in 21 hospitals in and around King County, Washington, from April 1999 through July 2000, using a validated screening protocol to identify patients who met the consensus criteria for acute lung injury. RESULTS A total of 1113 King County residents undergoing mechanical ventilation met the criteria for acute lung injury and were 15 years of age or older. On the basis of this figure, the crude incidence of acute lung injury was 78.9 per 100,000 person-years and the age-adjusted incidence was 86.2 per 100,000 person-years. The in-hospital mortality rate was 38.5 percent. The incidence of acute lung injury increased with age from 16 per 100,000 person-years for those 15 through 19 years of age to 306 per 100,000 person-years for those 75 through 84 years of age. Mortality increased with age from 24 percent for patients 15 through 19 years of age to 60 percent for patients 85 years of age or older (P<0.001). We estimate that each year in the United States there are 190,600 cases of acute lung injury, which are associated with 74,500 deaths and 3.6 million hospital days. CONCLUSIONS Acute lung injury has a substantial impact on public health, with an incidence in the United States that is considerably higher than previous reports have suggested.

3,358 citations

Journal ArticleDOI
TL;DR: End-of-life care is emerging as a comprehensive area of expertise in the ICU and demands the same high level of knowledge and competence as all other areas of ICU practice.
Abstract: Background: These recommendations have been developed to improve the care of intensive care unit (ICU) patients during the dying process. The recommendations build on those published in 2003 and highlight recent developments in the field from a U.S. perspective. They do not use an evidence grading system because most of the recommendations are based on ethical and legal principles that are not derived from empirically based evidence. Principal Findings: Family-centered care, which emphasizes the importance of the social structure within which patients are embedded, has emerged as a comprehensive ideal for managing end-of-life care in the ICU. ICU clinicians should be competent in all aspects of this care, including the practical and ethical aspects of withdrawing different modalities of life-sustaining treatment and the use of sedatives, analgesics, and nonpharmacologic approaches to easing the suffering of the dying process. Several key ethical concepts play a foundational role in guiding end-oflife care, including the distinctions between withholding and withdrawing treatments, between actions of killing and allowing to die, and between consequences that are intended vs. those that are merely foreseen (the doctrine of double effect). Improved communication with the family has been shown to improve patient care and family outcomes. Other knowledge unique to endof-life care includes principles for notifying families of a patient’s death and compassionate approaches to discussing options for organ donation. End-of-life care continues even after the death of the patient, and ICUs should consider developing comprehensive bereavement programs to support both families and the needs of the clinical staff. Finally, a comprehensive agenda for improving end-of-life care in the ICU has been developed to guide research, quality improvement efforts, and educational curricula. Conclusions: End-of-life care is emerging as a comprehensive area of expertise in the ICU and demands the same high level of knowledge and competence as all other areas of ICU practice. (Crit Care Med 2008; 36:953‐963)

910 citations

Journal ArticleDOI
23 Jul 2008-JAMA
TL;DR: Preliminary findings suggest that reactivation of CMV occurs frequently in critically ill immunocompetent patients and is associated with prolonged hospitalization or death.
Abstract: Context Cytomegalovirus (CMV) infection is associated with adverse clinical outcomes in immunosuppressed persons, but the incidence and association of CMV reactivation with adverse outcomes in critically ill persons lacking evidence of immunosuppression have not been well defined. Objective To determine the association of CMV reactivation with intensive care unit (ICU) and hospital length of stay in critically ill immunocompetent persons. Design, setting, and participants We prospectively assessed CMV plasma DNAemia by thrice-weekly real-time polymerase chain reaction (PCR) and clinical outcomes in a cohort of 120 CMV-seropositive, immunocompetent adults admitted to 1 of 6 ICUs at 2 separate hospitals at a large US tertiary care academic medical center between 2004 and 2006. Clinical measurements were assessed by personnel blinded to CMV PCR results. Risk factors for CMV reactivation and association with hospital and ICU length of stay were assessed by multivariable logistic regression and proportional odds models. Main outcome measures Association of CMV reactivation with prolonged hospital length of stay or death. Results The primary composite end point of continued hospitalization (n = 35) or death (n = 10) by 30 days occurred in 45 (35%) of the 120 patients. Cytomegalovirus viremia at any level occurred in 33% (39/120; 95% confidence interval [CI], 24%-41%) at a median of 12 days (range, 3-57 days) and CMV viremia greater than 1000 copies/mL occurred in 20% (24/120; 95% CI, 13%-28%) at a median of 26 days (range, 9-56 days). By logistic regression, CMV infection at any level (adjusted odds ratio [OR], 4.3; 95% CI, 1.6-11.9; P = .005) and at greater than 1000 copies/mL (adjusted OR, 13.9; 95% CI, 3.2-60; P Conclusions These preliminary findings suggest that reactivation of CMV occurs frequently in critically ill immunocompetent patients and is associated with prolonged hospitalization or death. A controlled trial of CMV prophylaxis in this setting is warranted.

493 citations

Journal ArticleDOI
01 Feb 2007-Chest
TL;DR: This article will review recent studies of the incidence, diagnosis, etiologic and prognostic factors, relevant disease subsets, mortality, and long-term outcomes of ALI.

458 citations

Journal ArticleDOI
TL;DR: It is suggested that allowing family members more opportunity to speak during conferences may improve family satisfaction, and increased proportion of family speech during ICU family conferences was significantly associated with increased family satisfaction with physician communication.
Abstract: Objective:Family members of critically ill patients report dissatisfaction with family-clinician communication about withdrawing life support, yet limited data exist to guide clinicians in this communication. The hypothesis of this analysis was that increased proportion of family speech during ICU f

457 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
20 Jun 2012-JAMA
TL;DR: The updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition and may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
Abstract: The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.

7,731 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: The rate of sepsis due to fungal organisms increased by 207 percent, with gram-positive bacteria becoming the predominant pathogens after 1987, and the total in-hospital mortality rate fell, yet the total number of deaths continued to increase.
Abstract: Background Sepsis represents a substantial health care burden, and there is limited epidemiologic information about the demography of sepsis or about the temporal changes in its incidence and outcome. We investigated the epidemiology of sepsis in the United States, with specific examination of race and sex, causative organisms, the disposition of patients, and the incidence and outcome. Methods We analyzed the occurrence of sepsis from 1979 through 2000 using a nationally representative sample of all nonfederal acute care hospitals in the United States. Data on new cases were obtained from hospital discharge records coded according to the International Classification of Diseases, Ninth Revision, Clinical Modification. Results Review of discharge data on approximately 750 million hospitalizations in the United States over the 22-year period identified 10,319,418 cases of sepsis. Sepsis was more common among men than among women (mean annual relative risk, 1.28 [95 percent confidence interval, 1.24 to 1.32]...

5,704 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analyses of the immune system’s response to chronic obstructive pulmonary disease and shows clear patterns of decline in the immune systems of elderly patients with compromised immune systems.
Abstract: Lionel A. Mandell, Richard G. Wunderink, Antonio Anzueto, John G. Bartlett, G. Douglas Campbell, Nathan C. Dean, Scott F. Dowell, Thomas M. File, Jr. Daniel M. Musher, Michael S. Niederman, Antonio Torres, and Cynthia G. Whitney McMaster University Medical School, Hamilton, Ontario, Canada; Northwestern University Feinberg School of Medicine, Chicago, Illinois; University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, and Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas; Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi School of Medicine, Jackson; Division of Pulmonary and Critical Care Medicine, LDS Hospital, and University of Utah, Salt Lake City, Utah; Centers for Disease Control and Prevention, Atlanta, Georgia; Northeastern Ohio Universities College of Medicine, Rootstown, and Summa Health System, Akron, Ohio; State University of New York at Stony Brook, Stony Brook, and Department of Medicine, Winthrop University Hospital, Mineola, New York; and Cap de Servei de Pneumologia i Allergia Respiratoria, Institut Clinic del Torax, Hospital Clinic de Barcelona, Facultat de Medicina, Universitat de Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer, CIBER CB06/06/0028, Barcelona, Spain.

5,558 citations