scispace - formally typeset
Search or ask a question
Author

Gordon H. Guyatt

Bio: Gordon H. Guyatt is an academic researcher from McMaster University. The author has contributed to research in topics: Randomized controlled trial & Evidence-based medicine. The author has an hindex of 231, co-authored 1620 publications receiving 228631 citations. Previous affiliations of Gordon H. Guyatt include Memorial Sloan Kettering Cancer Center & Cayetano Heredia University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the frequency and characteristics of discontinued randomized controlled trials (RCTs) and concluded that discontinuation has ethical implications, because participants consent on the premise of contributing to new medical knowledge, Research Ethics Committees (RECs) spend considerable effort reviewing study protocols, and limited resources for conducting research are wasted.
Abstract: Background Randomized controlled trials (RCTs) may be discontinued because of apparent harm, benefit, or futility. Other RCTs are discontinued early because of insufficient recruitment. Trial discontinuation has ethical implications, because participants consent on the premise of contributing to new medical knowledge, Research Ethics Committees (RECs) spend considerable effort reviewing study protocols, and limited resources for conducting research are wasted. Currently, little is known regarding the frequency and characteristics of discontinued RCTs.

34 citations

Journal ArticleDOI
TL;DR: This approach may aid in the interpretation of an article on therapy or prevention; in it, a strategy designed to prevent ventilator associated pneumonia in critically ill patients is discussed.
Abstract: Evidence based critical care medicine involves integrating clinical experience, expertise, and patient preferences with explicit, systematic, and judicious use of current best evidence in making medical decisions. Published evidence has many sources: research from the basic sciences of medicine, and from patient-centered clinical research on the accuracy of diagnostic tests, the power of prognostic markers, and the effectiveness and safety of preventive, therapeutic, rehabilitative, and palliative interventions. When critically appraising a clinical article for potential use in intensive care unit (ICU) practice, the first question we ask ourselves is: Is this study valid? If examination of the study methods reveals that the design is rigorous, we can turn to the two other key questions: What are the results? and, Will the results help me care for my patients? This approach may aid in the interpretation of an article on therapy or prevention; in it we discuss a strategy designed to prevent ventilator associated pneumonia in critically ill patients.

34 citations

01 Jan 2015
TL;DR: Quality of evidence is a key determinant for making a strong vs. a weak recommendation in Grading of Recommendations Assessment, Development and Evaluation factors.
Abstract: Objectives: The objective of the study was to assess the association between Grading of Recommendations Assessment, Development and Evaluation (GRADE) factors and the strength of recommendations. Study Design and Setting: The study was conducted as part of the development of clinical practice guideline (CPG) by American Association of Blood Banking related to role of prophylactic vs. therapeutic transfusion for the management of thrombocytopenia. The association between GRADE factors and strength of recommendations was assessed using logistic regression and multilevel mixed effect logistic regression model. Results: Seventeen members of the CPG panel participated in the recommendation process. The quality of evidence was the only statistically significant (odds ratio 5 4.5; P ! 0.001) GRADE factor associated with the strength of recommendations. The predictive model showed that there is about 90% probability that panelists would issue the same (strong) recommendation when confidence in the effects of intervention is high vs. 10% when the quality of evidence is very low. Conclusion: The results showed that quality of evidence is a key determinant for making a strong vs. a weak recommendation. 2015

34 citations

Journal ArticleDOI
06 Jul 2009-Trials
TL;DR: A better understanding of the extent to which tRCTs exaggerate treatment effects and of the factors associated with the magnitude of this bias can optimize trial design and data monitoring charters, and may aid in the interpretation of the results from trials stopped early for benefit.
Abstract: Randomized clinical trials (RCTs) stopped early for benefit often receive great attention and affect clinical practice, but pose interpretational challenges for clinicians, researchers, and policy makers. Because the decision to stop the trial may arise from catching the treatment effect at a random high, truncated RCTs (tRCTs) may overestimate the true treatment effect. The St udy O f Trial P olicy Of I nterim T runcation (STOPIT-1), which systematically reviewed the epidemiology and reporting quality of tRCTs, found that such trials are becoming more common, but that reporting of stopping rules and decisions were often deficient. Most importantly, treatment effects were often implausibly large and inversely related to the number of the events accrued. The aim of STOPIT-2 is to determine the magnitude and determinants of possible bias introduced by stopping RCTs early for benefit. We will use sensitive strategies to search for systematic reviews addressing the same clinical question as each of the tRCTs identified in STOPIT-1 and in a subsequent literature search. We will check all RCTs included in each systematic review to determine their similarity to the index tRCT in terms of participants, interventions, and outcome definition, and conduct new meta-analyses addressing the outcome that led to early termination of the tRCT. For each pair of tRCT and systematic review of corresponding non-tRCTs we will estimate the ratio of relative risks, and hence estimate the degree of bias. We will use hierarchical multivariable regression to determine the factors associated with the magnitude of this ratio. Factors explored will include the presence and quality of a stopping rule, the methodological quality of the trials, and the number of total events that had occurred at the time of truncation. Finally, we will evaluate whether Bayesian methods using conservative informative priors to "regress to the mean" overoptimistic tRCTs can correct observed biases. A better understanding of the extent to which tRCTs exaggerate treatment effects and of the factors associated with the magnitude of this bias can optimize trial design and data monitoring charters, and may aid in the interpretation of the results from trials stopped early for benefit.

34 citations

Journal ArticleDOI
TL;DR: A shorter cognitive instrument, the Quick Mild Cognitive Impairment (Qmci) screen, is compared with the SADAS-cog as outcome measures in clinical trials and it is suggested that clinicians and investigators can substitute the shorter Qmci for the S ADAS- cog.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations