scispace - formally typeset
Search or ask a question
Author

Gordon H. Guyatt

Bio: Gordon H. Guyatt is an academic researcher from McMaster University. The author has contributed to research in topics: Randomized controlled trial & Evidence-based medicine. The author has an hindex of 231, co-authored 1620 publications receiving 228631 citations. Previous affiliations of Gordon H. Guyatt include Memorial Sloan Kettering Cancer Center & Cayetano Heredia University.


Papers
More filters
Journal ArticleDOI
26 Sep 2012-JAMA
TL;DR: This article uses the existing Users' Guides format to address study validity, interpretation of results, and application to a patient scenario.
Abstract: Multiple treatment comparison (MTC) meta-analysis uses both direct (head-to-head) randomized clinical trial (RCT) evidence as well as indirect evidence from RCTs to compare the relative effectiveness of all included interventions. The methodological quality of MTCs may be difficult for clinicians to interpret because the number of interventions evaluated may be large and the methodological approaches may be complex. Clinicians and others evaluating an MTC should be aware of the potential biases that can affect the interpretation of these analyses. Readers should consider whether the primary studies are sufficiently homogeneous to combine; whether the different interventions are sufficiently similar in their populations, study designs, and outcomes; and whether the direct evidence is sufficiently similar to the indirect evidence to consider combining. This article uses the existing Users' Guides format to address study validity, interpretation of results, and application to a patient scenario.

328 citations

Book
21 Sep 2005
TL;DR: Becoming a Clinical Researcher * Becoming a Successful Clinician-Investigator * Preparing a Research Protocol to improve its Chances for Success.
Abstract: PART ONE: Performing Clinical Research * Forming Research Questions... 3 * Conducting Systematic Reviews... 15 * Finding Information About the Burden of Disease... 49 * An Introduction to Performing Therapeutic Trials... 59 * The Tactics of Performing Therapeutic Trials... 66 * The Principles Behind the Tactics of Performing Therapeutic Trials... 173 * Testing Quality Improvement Interventions... 244 * Evaluating Diagnostic Tests... 273 * Determining Prognosis and Creating Clinical Decision Rules... 323 * Assessing Claims of Causation... 356 * Generating Outcome Measurements, Especially for Quality of Life... 388 PART TWO: Becoming a Clinical Researcher * Becoming a Successful Clinician-Investigator... 415 * Preparing a Research Protocol to Improve its Chances for Success... 429 * Online Data Collection... 440 * Analyzing Data... 446 * Preparing Reports for Publication and Responding to Reviewers' Comments... 461 * Dealing with the Media... 474 Index... 487

326 citations

Journal ArticleDOI
16 Apr 1997-JAMA
TL;DR: A physician following a 35-year-old man who has had active Crohn disease for 8 years is impressed by both the methods and results of a recent articledocumenting that such patients benefit from oral methotrexate and suggests to the patient that he consider this medication.
Abstract: CLINICAL SCENARIO You are a physician following a 35-year-old man who has had active Crohn disease for 8 years. The symptoms were severe enough to require resectional surgery 4 years ago, and despite treatment with sulfasalazine and metronidazole, the patient has had active disease requiring oral steroids for the last 2 years. Repeated attempts to decrease the prednisone have failed, and the patient has required doses of greater than 15 mg per day to control symptoms. You are impressed by both the methods and results of a recent article1documenting that such patients benefit from oral methotrexate and suggest to the patient that he consider this medication. When you explain some of the risks of methotrexate, particularly potential liver toxicity, the patient is hesitant. How much better, he asks, am I likely to feel while taking this medication? INTRODUCTION There are 3 reasons we offer treatment to our patients.

323 citations

Journal ArticleDOI
08 Apr 2000-BMJ
TL;DR: After a decade of unsystematic observation of an internal medicine residency programme committed to systematic training of evidence based practitioners, the limitations of this strategy are highlighted and two complementary alternatives are suggested.
Abstract: High quality health care implies practice that is consistent with the best evidence. An intuitively appealing way to achieve such evidence based practice is to train clinicians who can independently find, appraise, and apply the best evidence (whom we call evidence based practitioners). Indeed, we ourselves have advocated this approach.1 Now, however, we want to highlight the limitations of this strategy and suggest two complementary alternatives. The skills needed to provide an evidence based solution to a clinical dilemma include defining the problem; constructing and conducting an efficient search to locate the best evidence; critically appraising the evidence; and considering that evidence, and its implications, in the context of patients' circumstances and values. Attaining these skills requires intensive study and frequent, time consuming, application. After a decade of unsystematic observation of an internal medicine residency programme committed to systematic training of evidence based practitioners,1 we have concluded—consistent …

321 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations