scispace - formally typeset
Search or ask a question
Author

Gordon H. Guyatt

Bio: Gordon H. Guyatt is an academic researcher from McMaster University. The author has contributed to research in topics: Randomized controlled trial & Evidence-based medicine. The author has an hindex of 231, co-authored 1620 publications receiving 228631 citations. Previous affiliations of Gordon H. Guyatt include Memorial Sloan Kettering Cancer Center & Cayetano Heredia University.


Papers
More filters
Journal ArticleDOI
TL;DR: A list of issues and possible approaches for addressing important coexisting conditions in each step of the guideline development process, with a focus on considering relevant interactions between the conditions, their treatments and their outcomes, is drafted.
Abstract: Many patients of all ages have multiple conditions, yet clinicians often lack explicit guidance on how to approach clinical decision-making for such people. Most recommendations from clinical practice guidelines (CPGs) focus on the management of single diseases, and may be harmful or impractical for patients with multimorbidity. A major barrier to the development of guidance for people with multimorbidity stems from the fact that the evidence underlying CPGs derives from studies predominantly focused on the management of a single disease. In this paper, the investigators from the Improving Guidelines for Multimorbid Patients Study Group present consensus-based recommendations for guideline developers to make guidelines more useful for the care of people with multimorbidity. In an iterative process informed by review of key literature and experience, we drafted a list of issues and possible approaches for addressing important coexisting conditions in each step of the guideline development process, with a focus on considering relevant interactions between the conditions, their treatments and their outcomes. The recommended approaches address consideration of coexisting conditions at all major steps in CPG development, from nominating and scoping the topic, commissioning the work group, refining key questions, ranking importance of outcomes, conducting systematic reviews, assessing quality of evidence and applicability, summarizing benefits and harms, to formulating recommendations and grading their strength. The list of issues and recommendations was reviewed and refined iteratively by stakeholders. This framework acknowledges the challenges faced by CPG developers who must make complex judgments in the absence of high-quality or direct evidence. These recommendations require validation through implementation, evaluation and refinement.

138 citations

Journal ArticleDOI
TL;DR: Tests of fiber show a consistent beneficial effect for symptoms and bleeding in the treatment of symptomatic hemorrhoids and are compatible with large treatment effects in prolapse, pain, and itching.

136 citations

Journal ArticleDOI
25 Feb 2013-PLOS ONE
TL;DR: This guide proposes methods for handling participants excluded from analyses of randomized trials using relatively extreme assumptions that may vary in plausibility to help in establishing the extent to which risk of bias impacts meta-analysis results.
Abstract: INTRODUCTION Systematic reviewer authors intending to include all randomized participants in their meta-analyses need to make assumptions about the outcomes of participants with missing data. OBJECTIVE The objective of this paper is to provide systematic reviewer authors with a relatively simple guidance for addressing dichotomous data for participants excluded from analyses of randomized trials. METHODS This guide is based on a review of the Cochrane handbook and published methodological research. The guide deals with participants excluded from the analysis who were considered 'non-adherent to the protocol' but for whom data are available, and participants with missing data. RESULTS Systematic reviewer authors should include data from 'non-adherent' participants excluded from the primary study authors' analysis but for whom data are available. For missing, unavailable participant data, authors may conduct a complete case analysis (excluding those with missing data) as the primary analysis. Alternatively, they may conduct a primary analysis that makes plausible assumptions about the outcomes of participants with missing data. When the primary analysis suggests important benefit, sensitivity meta-analyses using relatively extreme assumptions that may vary in plausibility can inform the extent to which risk of bias impacts the confidence in the results of the primary analysis. The more plausible assumptions draw on the outcome event rates within the trial or in all trials included in the meta-analysis. The proposed guide does not take into account the uncertainty associated with assumed events. CONCLUSIONS This guide proposes methods for handling participants excluded from analyses of randomized trials. These methods can help in establishing the extent to which risk of bias impacts meta-analysis results.

136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidance and examples for rating inconsistency, imprecision, and other domains for a body of evidence describing the relative importance of outcomes, and also provide suggestions on how to detect publication bias and discuss the domains to rate up the certainty.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations