scispace - formally typeset
Search or ask a question
Author

Gordon H. Guyatt

Bio: Gordon H. Guyatt is an academic researcher from McMaster University. The author has contributed to research in topics: Randomized controlled trial & Evidence-based medicine. The author has an hindex of 231, co-authored 1620 publications receiving 228631 citations. Previous affiliations of Gordon H. Guyatt include Memorial Sloan Kettering Cancer Center & Cayetano Heredia University.


Papers
More filters
Journal ArticleDOI
01 May 2017-BMJ Open
TL;DR: Over the long term, patients who undergo knee arthroscopy versus those who receive conservative management strategies do not have important benefits in pain or function.
Abstract: Objective To determine the effects and complications of arthroscopic surgery compared with conservative management strategies in patients with degenerative knee disease. Design Systematic review. Main outcome measures Pain, function, adverse events. Data sources MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Google Scholar and Open Grey up to August 2016. Eligibility criteria For effects, randomised clinical trials (RCTs) comparing arthroscopic surgery with a conservative management strategy (including sham surgery) in patients with degenerative knee disease. For complications, RCTs and observational studies. Review methods Two reviewers independently extracted data and assessed risk of bias for patient-important outcomes. A parallel guideline committee ( BMJ Rapid Recommendations) provided input on the design and interpretation of the systematic review, including selection of patient-important outcomes. We used the GRADE approach to rate the certainty (quality) of the evidence. Results We included 13 RCTs and 12 observational studies. With respect to pain, the review identified high-certainty evidence that knee arthroscopy results in a very small reduction in pain up to 3 months (mean difference =5.4 on a 100-point scale, 95% CI 2.0 to 8.8) and very small or no pain reduction up to 2 years (mean difference =3.1, 95% CI −0.2 to 6.4) when compared with conservative management. With respect to function, the review identified moderate-certainty evidence that knee arthroscopy results in a very small improvement in the short term (mean difference =4.9 on a 100-point scale, 95% CI 1.5 to 8.4) and very small or no improved function up to 2 years (mean difference =3.2, 95% CI −0.5 to 6.8). Alternative presentations of magnitude of effect, and associated sensitivity analyses, were consistent with the findings of the primary analysis. Low-quality evidence suggested a very low probability of serious complications after knee arthroscopy. Conclusions Over the long term, patients who undergo knee arthroscopy versus those who receive conservative management strategies do not have important benefits in pain or function. Trial registration number PROSPERO CRD42016046242.

118 citations

Journal Article
TL;DR: In the first of a series of four articles the authors explain the statistical concepts of hypothesis testing and p values, which may lead to an erroneous conclusion that an outcome is significant if the joint probability of the outcomes is not taken into account.
Abstract: In the first of a series of four articles the authors explain the statistical concepts of hypothesis testing and p values. In many clinical trials investigators test a null hypothesis that there is no difference between a new treatment and a placebo or between two treatments. The result of a single experiment will almost always show some difference between the experimental and the control groups. Is the difference due to chance, or is it large enough to reject the null hypothesis and conclude that there is a true difference in treatment effects? Statistical tests yield a p value: the probability that the experiment would show a difference as great or greater than that observed if the null hypothesis were true. By convention, p values of less than 0.05 are considered statistically significant, and investigators conclude that there is a real difference. However, the smaller the sample size, the greater the chance of erroneously concluding that the experimental treatment does not differ from the control--in statistical terms, the power of the test may be inadequate. Tests of several outcomes from one set of data may lead to an erroneous conclusion that an outcome is significant if the joint probability of the outcomes is not taken into account. Hypothesis testing has limitations, which will be discussed in the next article in the series.

118 citations

Journal ArticleDOI
TL;DR: A Grading of Recommendations, Assessment, Development and Evaluation (GRADE) summary of findings (SoF) table format that displays the critical information from a network meta-analysis (NMA) that facilitates understanding NMA findings and health decision-making is developed.

117 citations

Journal ArticleDOI
TL;DR: The approach provides a useful, reasonable, and relatively simple, quantitative guidance for judging the impact of risk of bias as a result of missing participant data in systematic reviews of continuous outcomes.

117 citations

Journal ArticleDOI
TL;DR: The authors' Internet-based survey to surgeons resulted in a significantly lower response rate than a traditional mailed survey, and researchers should not assume that the widespread availability and potential ease of Internet- based surveys will translate into higher response rates.
Abstract: BACKGROUND: Low response rates among surgeons can threaten the validity of surveys. Internet technologies may reduce the time, effort, and financial resources needed to conduct surveys. OBJECTIVE: We investigated whether using Web-based technology could increase the response rates to an international survey. METHODS: We solicited opinions from the 442 surgeon–members of the Orthopaedic Trauma Association regarding the treatment of femoral neck fractures. We developed a self-administered questionnaire after conducting a literature review, focus groups, and key informant interviews, for which we used sampling to redundancy techniques. We administered an Internet version of the questionnaire on a Web site, as well as a paper version, which looked similar to the Internet version and which had identical content. Only those in our sample could access the Web site. We alternately assigned the participants to receive the survey by mail (n=221) or an email invitation to participate on the Internet (n=221). Non-respondents in the mail arm received up to three additional copies of the survey, while non-respondents in the Internet arm received up to three additional requests, including a final mailed copy. All participants in the Internet arm had an opportunity to request an emailed Portable Document Format (PDF) version. RESULTS: The Internet arm demonstrated a lower response rate (99/221, 45%) than the mail questionnaire arm (129/221, 58%) (absolute difference 13%, 95% confidence interval 4%-22%, P<0.01). CONCLUSIONS: Our Internet-based survey to surgeons resulted in a significantly lower response rate than a traditional mailed survey. Researchers should not assume that the widespread availability and potential ease of Internet-based surveys will translate into higher response rates. [J Med Internet Res 2004;6(3):e30]

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations