scispace - formally typeset
Search or ask a question
Author

Gordon H. Guyatt

Bio: Gordon H. Guyatt is an academic researcher from McMaster University. The author has contributed to research in topics: Randomized controlled trial & Evidence-based medicine. The author has an hindex of 231, co-authored 1620 publications receiving 228631 citations. Previous affiliations of Gordon H. Guyatt include Memorial Sloan Kettering Cancer Center & Cayetano Heredia University.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigators can achieve higher response rates for demographic items using closed format response options, but at the risk of increasing inaccuracy in response to questions requiring computation, according to this study.

109 citations

Journal ArticleDOI
TL;DR: Thequality of life of subjects with occupational asthma is slightly less satisfactory than that of subjects paired for clinical and functional indices, although the magnitude of the difference is small; and quality of life is weakly correlated with clinical andfunctional indices.
Abstract: Background: The aim of the study was to assess the quality of life in subjects with occupational asthma after removal from exposure to the offending agent by comparison with a group of subjects paired for clinical and functional indices in order to show the separation between the two groups of subjects with a hypothesized different quality of life and relate the impairment in quality of life to anthropometric, clinical, and functional variables. Methods: A previously described asthma quality of life questionnaire (Juniper EF, et al. Thorax 1992; 47:76–83) was administered to two groups of subjects in a prospective manner. Information on the clinical and functional severity of asthma was obtained from each subject. Two groups of subjects were assessed: group 1, 134 subjects with occupational asthma who were seen more than 2 years after the diagnosis was confirmed, and group 2, 91 subjects who were seen in specialized asthma clinics of tertiary care hospitals for treatment of nonoccupational asthma and matched with 91 of the 134 subjects with occupational asthma from group 1 according to need for medication and (when available), baseline forced expiratory volume in 1 second (FEV 1 ) and level of bronchial responsiveness. Results: A statistically significant difference was seen in the four domains (asthma symptoms, limitation of activities, emotional dysfunction, environmental stimuli) and in the total score of the quality of life questionnaire between the two groups of matched subjects; the mean difference in the total score was 0.6 on a scale of 1 (no limitation or none of the time) to 7 (severe limitation or all the time). A weak but statistically significant correlation between the total score and several indices (FEV 1 , bronchial responsiveness and asthma severity) was generally obtained. Conclusion: The quality of life of subjects with occupational asthma is slightly less satisfactory than that of subjects paired for clinical and functional indices, although the magnitude of the difference is small; and quality of life is weakly correlated with clinical and functional indices.

109 citations

Journal ArticleDOI
01 Jul 2004-BMJ
TL;DR: Clinicians and patients should beware of possible decreases in the systemic bioavailability of conventional drugs when taken concomitantly with St John's wort.
Abstract: Objective To determine the methodological quality of clinical trials that examined possible interactions of St John9s wort with conventional drugs, and to examine the results of these trials. Design Systematic review. Data sources Electronic databases from inception to April 2004, reference lists from published reports, and experts in the field. Study selection Eligible studies were prospective clinical trials evaluating the pharmacokinetic effect of St John9s wort on the metabolism of conventional drugs. Data extraction Two reviewers selected studies for inclusion and independently extracted data. Data synthesis 22 pharmacokinetic trials studied an average of 12 (SD 5) participants; 17 trials studied healthy volunteers and five studied patients. Most (17) studies used a “before and after” design; four studies used control groups other than the active group. Three studies randomised the sequence of administration or the participants to study arms or periods; three studies blinded participants or investigators. In 15 trials, investigators independently assayed the herb. Of 19 trials with available plasma data, three found no important interaction (change in area under the curve Conclusion Clinicians and patients should beware of possible decreases in the systemic bioavailability of conventional drugs when taken concomitantly with St John9s wort.

108 citations

Journal ArticleDOI
TL;DR: Quantification of the determinants of the threshold NNT and of the minimum event rate to justify treatment can assist clinicians and patients in the explicit use of underlying values when making treatment decisions.

107 citations

Journal ArticleDOI
01 Oct 2015-BMJ Open
TL;DR: A systematic survey of the literature is to collect and characterise published anchor-based MIDs associated with PRO instruments used in evaluating the effects of interventions on chronic medical and psychiatric conditions and to assess their credibility to help improve the interpretability of outcome effects in systematic reviews and practice guidelines.
Abstract: Introduction Patient-reported outcomes (PROs) are often the outcomes of greatest importance to patients. The minimally important difference (MID) provides a measure of the smallest change in the PRO that patients perceive as important. An anchor-based approach is the most appropriate method for MID determination. No study or database currently exists that provides all anchor-based MIDs associated with PRO instruments; nor are there any accepted standards for appraising the credibility of MID estimates. Our objectives are to complete a systematic survey of the literature to collect and characterise published anchor-based MIDs associated with PRO instruments used in evaluating the effects of interventions on chronic medical and psychiatric conditions and to assess their credibility. Methods and analysis We will search MEDLINE, EMBASE and PsycINFO (1989 to present) to identify studies addressing methods to estimate anchor-based MIDs of target PRO instruments or reporting empirical ascertainment of anchor-based MIDs. Teams of two reviewers will screen titles and abstracts, review full texts of citations, and extract relevant data. On the basis of findings from studies addressing methods to estimate anchor-based MIDs, we will summarise the available methods and develop an instrument addressing the credibility of empirically ascertained MIDs. We will evaluate the credibility of all studies reporting on the empirical ascertainment of anchor-based MIDs using the credibility instrument, and assess the instrument9s inter-rater reliability. We will separately present reports for adult and paediatric populations. Ethics and dissemination No research ethics approval was required as we will be using aggregate data from published studies. Our work will summarise anchor-based methods available to establish MIDs, provide an instrument to assess the credibility of available MIDs, determine the reliability of that instrument, and provide a comprehensive compendium of published anchor-based MIDs associated with PRO instruments which will help improve the interpretability of outcome effects in systematic reviews and practice guidelines.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Moher et al. as mentioned in this paper introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses, which is used in this paper.
Abstract: David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses

62,157 citations

Journal Article
TL;DR: The QUOROM Statement (QUality Of Reporting Of Meta-analyses) as mentioned in this paper was developed to address the suboptimal reporting of systematic reviews and meta-analysis of randomized controlled trials.
Abstract: Systematic reviews and meta-analyses have become increasingly important in health care. Clinicians read them to keep up to date with their field,1,2 and they are often used as a starting point for developing clinical practice guidelines. Granting agencies may require a systematic review to ensure there is justification for further research,3 and some health care journals are moving in this direction.4 As with all research, the value of a systematic review depends on what was done, what was found, and the clarity of reporting. As with other publications, the reporting quality of systematic reviews varies, limiting readers' ability to assess the strengths and weaknesses of those reviews. Several early studies evaluated the quality of review reports. In 1987, Mulrow examined 50 review articles published in 4 leading medical journals in 1985 and 1986 and found that none met all 8 explicit scientific criteria, such as a quality assessment of included studies.5 In 1987, Sacks and colleagues6 evaluated the adequacy of reporting of 83 meta-analyses on 23 characteristics in 6 domains. Reporting was generally poor; between 1 and 14 characteristics were adequately reported (mean = 7.7; standard deviation = 2.7). A 1996 update of this study found little improvement.7 In 1996, to address the suboptimal reporting of meta-analyses, an international group developed a guidance called the QUOROM Statement (QUality Of Reporting Of Meta-analyses), which focused on the reporting of meta-analyses of randomized controlled trials.8 In this article, we summarize a revision of these guidelines, renamed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses), which have been updated to address several conceptual and practical advances in the science of systematic reviews (Box 1). Box 1 Conceptual issues in the evolution from QUOROM to PRISMA

46,935 citations

Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations

Journal ArticleDOI
13 Sep 1997-BMJ
TL;DR: Funnel plots, plots of the trials' effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials.
Abstract: Objective: Funnel plots (plots of effect estimates against sample size) may be useful to detect bias in meta-analyses that were later contradicted by large trials. We examined whether a simple test of asymmetry of funnel plots predicts discordance of results when meta-analyses are compared to large trials, and we assessed the prevalence of bias in published meta-analyses. Design: Medline search to identify pairs consisting of a meta-analysis and a single large trial (concordance of results was assumed if effects were in the same direction and the meta-analytic estimate was within 30% of the trial); analysis of funnel plots from 37 meta-analyses identified from a hand search of four leading general medicine journals 1993-6 and 38 meta-analyses from the second 1996 issue of the Cochrane Database of Systematic Reviews . Main outcome measure: Degree of funnel plot asymmetry as measured by the intercept from regression of standard normal deviates against precision. Results: In the eight pairs of meta-analysis and large trial that were identified (five from cardiovascular medicine, one from diabetic medicine, one from geriatric medicine, one from perinatal medicine) there were four concordant and four discordant pairs. In all cases discordance was due to meta-analyses showing larger effects. Funnel plot asymmetry was present in three out of four discordant pairs but in none of concordant pairs. In 14 (38%) journal meta-analyses and 5 (13%) Cochrane reviews, funnel plot asymmetry indicated that there was bias. Conclusions: A simple analysis of funnel plots provides a useful test for the likely presence of bias in meta-analyses, but as the capacity to detect bias will be limited when meta-analyses are based on a limited number of small trials the results from such analyses should be treated with considerable caution. Key messages Systematic reviews of randomised trials are the best strategy for appraising evidence; however, the findings of some meta-analyses were later contradicted by large trials Funnel plots, plots of the trials9 effect estimates against sample size, are skewed and asymmetrical in the presence of publication bias and other biases Funnel plot asymmetry, measured by regression analysis, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from the Cochrane Database of Systematic Reviews Critical examination of systematic reviews for publication and related biases should be considered a routine procedure

37,989 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations