scispace - formally typeset
Search or ask a question
Author

Gordon M. Cragg

Bio: Gordon M. Cragg is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Drug discovery & Camptothecin. The author has an hindex of 48, co-authored 109 publications receiving 30936 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003 and is able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame.
Abstract: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003. In the case of all approved agents the time frame has been extended to include the 251/2 years from 01/1981 to 06/2006 for all diseases worldwide and from 1950 (earliest so far identified) to 06/2006 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 155 small molecules, 73% are other than “S” (synthetic), with 47% actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the antiinfective area ...

5,170 citations

Journal ArticleDOI
TL;DR: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012, and the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide.
Abstract: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a “natural product mimic”, or “NM”, to join the original primary divisions and the designation “natural product botanical”, or “NB”, to cover those botanical “defined mixtures” now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over t...

4,337 citations

Journal ArticleDOI
TL;DR: This review is an updated and expanded version of the three prior reviews and adds a new designation, "natural product botanical" or "NB", to cover those botanical "defined mixtures" that have now been recognized as drug entities by the FDA and similar organizations.
Abstract: This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003, and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1, 1981, to December 31, 2010, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions and have added a new designation, “natural product botanical” or “NB”, to cover those botanical “defined mixtures” that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131, or 74...

4,271 citations

Journal ArticleDOI
TL;DR: From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well, and in the area of cancer, the percentage of small molecule, new chemical entities that are nonsynthetic has remained at 62% averaged over the whole time frame.
Abstract: This review is an updated and expanded version of a paper that was published in this journal in 1997. The time frame has been extended in both directions to include the 22 years from 1981 to 2002, and a new secondary subdivision related to the natural product source but applied to formally synthetic compounds has been introduced, using the concept of a “natural product mimic” or “NM” to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, the percentage of small molecule, new chemical entities that are nonsynthetic has remained at 62% averaged over the whole time frame. In other areas, the influence of natural product structures is quite marked, particularly in the antihypertensive area, where of the 74 formally synthetic drugs, 48 can be traced to natural product structures/mimics. Similarly, with the 10 antimigraine drugs, seven are bas...

2,985 citations

Journal ArticleDOI
TL;DR: Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, they are still able to identify only two de novo combinatorials compounds approved as drugs in this 39-year time frame.
Abstract: This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.

2,560 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003 and is able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame.
Abstract: This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003. In the case of all approved agents the time frame has been extended to include the 251/2 years from 01/1981 to 06/2006 for all diseases worldwide and from 1950 (earliest so far identified) to 06/2006 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 155 small molecules, 73% are other than “S” (synthetic), with 47% actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the antiinfective area ...

5,170 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012, and the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide.
Abstract: This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a “natural product mimic”, or “NM”, to join the original primary divisions and the designation “natural product botanical”, or “NB”, to cover those botanical “defined mixtures” now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over t...

4,337 citations

Journal ArticleDOI
TL;DR: This review is an updated and expanded version of the three prior reviews and adds a new designation, "natural product botanical" or "NB", to cover those botanical "defined mixtures" that have now been recognized as drug entities by the FDA and similar organizations.
Abstract: This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003, and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1, 1981, to December 31, 2010, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a “natural product mimic” or “NM” to join the original primary divisions and have added a new designation, “natural product botanical” or “NB”, to cover those botanical “defined mixtures” that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131, or 74...

4,271 citations