Author
Gorthi R. K. Sai Subrahmanyam
Other affiliations: Indian Institute of Space Science and Technology, Indian Institute of Technology Madras
Bio: Gorthi R. K. Sai Subrahmanyam is an academic researcher from Indian Institutes of Technology. The author has contributed to research in topics: Kalman filter & Convolutional neural network. The author has an hindex of 9, co-authored 39 publications receiving 1737 citations. Previous affiliations of Gorthi R. K. Sai Subrahmanyam include Indian Institute of Space Science and Technology & Indian Institute of Technology Madras.
Papers
More filters
University of Ljubljana1, University of Birmingham2, Czech Technical University in Prague3, Linköping University4, Austrian Institute of Technology5, Carnegie Mellon University6, Parthenope University of Naples7, University of Isfahan8, Autonomous University of Madrid9, University of Ottawa10, University of Oxford11, Hong Kong Baptist University12, Kyiv Polytechnic Institute13, Middle East Technical University14, Hacettepe University15, King Abdullah University of Science and Technology16, Pohang University of Science and Technology17, University of Nottingham18, University at Albany, SUNY19, Chinese Academy of Sciences20, Dalian University of Technology21, Xi'an Jiaotong University22, Indian Institute of Space Science and Technology23, Hong Kong University of Science and Technology24, ASELSAN25, Commonwealth Scientific and Industrial Research Organisation26, Australian National University27, University of Missouri28, University of Verona29, Universidade Federal de Itajubá30, United States Naval Research Laboratory31, Marquette University32, Graz University of Technology33, Naver Corporation34, Imperial College London35, Electronics and Telecommunications Research Institute36, Zhejiang University37, University of Surrey38, Harbin Institute of Technology39, Lehigh University40
TL;DR: The Visual Object Tracking challenge VOT2016 goes beyond its predecessors by introducing a new semi-automatic ground truth bounding box annotation methodology and extending the evaluation system with the no-reset experiment.
Abstract: The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net).
744 citations
23 Jan 2019
TL;DR: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative; results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years.
Abstract: The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
639 citations
University of Ljubljana1, University of Birmingham2, Czech Technical University in Prague3, Linköping University4, Austrian Institute of Technology5, Autonomous University of Madrid6, Parthenope University of Naples7, University of Isfahan8, University of Oxford9, Superior National School of Advanced Techniques10, Middle East Technical University11, Dalian University of Technology12, Chinese Academy of Sciences13, ASELSAN14, United States Naval Research Laboratory15, National University of Defense Technology16, University of Science and Technology of China17, Electronics and Telecommunications Research Institute18, Zhejiang University19, Beijing University of Posts and Telecommunications20, Huazhong University of Science and Technology21, University of Missouri22, Carnegie Mellon University23, General Electric24, King Abdullah University of Science and Technology25, University of California, Merced26, University of Surrey27, University at Albany, SUNY28
TL;DR: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative; results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years.
Abstract: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.
485 citations
TL;DR: Use of CNN operating on focus stack for the detection of malaria is first of its kind, and it not only improved the detection accuracy but also favored the processing on cell patches and avoided the need for hand‐engineered features.
Abstract: The present paper introduces a focus stacking-based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of images is used. The cell counting problem is addressed as the segmentation problem and we propose a 2-level segmentation strategy. Use of CNN operating on focus stack for the detection of malaria is first of its kind, and it not only improved the detection accuracy (both in terms of sensitivity [97.06%] and specificity [98.50%]) but also favored the processing on cell patches and avoided the need for hand-engineered features. The slide images are acquired with a custom-built portable slide scanner made from low-cost, off-the-shelf components and is suitable for point-of-care diagnostics. The proposed approach of employing sophisticated algorithmic processing together with inexpensive instrumentation can potentially benefit clinicians to enable malaria diagnosis.
100 citations
TL;DR: This correspondence proposes a recursive algorithm for noise reduction in synthetic aperture radar imagery by incorporating a discontinuity-adaptive Markov random field prior within the unscented Kalman filter framework through importance sampling.
Abstract: This correspondence proposes a recursive algorithm for noise reduction in synthetic aperture radar imagery. Excellent despeckling in conjunction with feature preservation is achieved by incorporating a discontinuity-adaptive Markov random field prior within the unscented Kalman filter framework through importance sampling. The performance of this method is demonstrated on both synthetic and real examples.
30 citations
Cited by
More filters
01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.
2,975 citations
15 Oct 2004
2,118 citations
18 Jun 2018
TL;DR: The Siamese region proposal network (Siamese-RPN) is proposed which is end-to-end trained off-line with large-scale image pairs for visual object tracking and consists of SiAMESe subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch.
Abstract: Visual object tracking has been a fundamental topic in recent years and many deep learning based trackers have achieved state-of-the-art performance on multiple benchmarks. However, most of these trackers can hardly get top performance with real-time speed. In this paper, we propose the Siamese region proposal network (Siamese-RPN) which is end-to-end trained off-line with large-scale image pairs. Specifically, it consists of Siamese subnetwork for feature extraction and region proposal subnetwork including the classification branch and regression branch. In the inference phase, the proposed framework is formulated as a local one-shot detection task. We can pre-compute the template branch of the Siamese subnetwork and formulate the correlation layers as trivial convolution layers to perform online tracking. Benefit from the proposal refinement, traditional multi-scale test and online fine-tuning can be discarded. The Siamese-RPN runs at 160 FPS while achieving leading performance in VOT2015, VOT2016 and VOT2017 real-time challenges.
2,016 citations
21 Jul 2017
TL;DR: This work revisit the core DCF formulation and introduces a factorized convolution operator, which drastically reduces the number of parameters in the model, and a compact generative model of the training sample distribution that significantly reduces memory and time complexity, while providing better diversity of samples.
Abstract: In recent years, Discriminative Correlation Filter (DCF) based methods have significantly advanced the state-of-the-art in tracking. However, in the pursuit of ever increasing tracking performance, their characteristic speed and real-time capability have gradually faded. Further, the increasingly complex models, with massive number of trainable parameters, have introduced the risk of severe over-fitting. In this work, we tackle the key causes behind the problems of computational complexity and over-fitting, with the aim of simultaneously improving both speed and performance. We revisit the core DCF formulation and introduce: (i) a factorized convolution operator, which drastically reduces the number of parameters in the model, (ii) a compact generative model of the training sample distribution, that significantly reduces memory and time complexity, while providing better diversity of samples, (iii) a conservative model update strategy with improved robustness and reduced complexity. We perform comprehensive experiments on four benchmarks: VOT2016, UAV123, OTB-2015, and TempleColor. When using expensive deep features, our tracker provides a 20-fold speedup and achieves a 13.0% relative gain in Expected Average Overlap compared to the top ranked method [12] in the VOT2016 challenge. Moreover, our fast variant, using hand-crafted features, operates at 60 Hz on a single CPU, while obtaining 65.0% AUC on OTB-2015.
1,993 citations
01 Jun 2019
TL;DR: In this paper, a generalized IoU (GIoU) metric is proposed for non-overlapping bounding boxes, which can be directly used as a regression loss.
Abstract: Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the this weakness by introducing a generalized version of IoU as both a new loss and a new metric. By incorporating this generalized IoU ( GIoU) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
1,527 citations