scispace - formally typeset
Search or ask a question
Author

Govindan Selvakumar

Bio: Govindan Selvakumar is an academic researcher from Indian Institute of Horticultural Research. The author has contributed to research in topics: Microbial inoculant & Rhizobacteria. The author has an hindex of 21, co-authored 54 publications receiving 1700 citations. Previous affiliations of Govindan Selvakumar include Tamil Nadu Agricultural University & Indian Council of Agricultural Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Plant growth promoting rhizobacteria are an important group of microbial inoculants that have been studied extensively for their ability to promote plant growth and improve productivity and the information available on these novel PGPRs with regard to their biology and utility is discussed in this review.

171 citations

Journal ArticleDOI
TL;DR: In this paper, the cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) was evaluated for 15 and 4°C.
Abstract: Aim: To determine the cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708). Methods and Results: Serratia marcescens strain SRM was isolated from the flowers of summer squash plants, showing no apparent symptoms of yellow vine disease. It was evaluated for growth and plant growth promotion attributes at 15 and 4°C. At 15°C, the isolate was able to solubilize 76·6 μg ml−1 of P and produce Indole Acetic Acid, IAA (11·1 μg ml−1). HCN and siderophore production were also detected at 15°C. The isolate retained all the plant growth promotion traits at 4°C. Seed bacterization with the isolate significantly enhanced plant biomass and nutrient uptake of wheat seedlings grown in cold temperatures. Conclusion: Serratia marcescens strain SRM is a promising cold-tolerant isolate that can significantly influence wheat seedling growth at cold temperatures. Significance and Impact of the Study: This strain can be employed as a bioinoculant in cold temperature conditions.

158 citations

Journal ArticleDOI
TL;DR: It is proposed that Pantoea dispersa 1A (MTCC 8706), could be deployed as an inoculant to attain the desired results of bacterization in cold wheat-growing environments.
Abstract: Pantoea dispersa strain 1A is a Gram-negative rod-shaped, yellow-pigmented bacterium isolated on nutrient agar plates incubated at 4°C. The identity of the bacterium was confirmed by sequencing of the 16 S rRNA gene. It was capable of growing at temperatures ranging from 4 to 42°C, but maximum growth was observed at 30°C. It is endowed with multiple plant growth promotion attributes such as phosphate solubilization, IAA production, siderophore production and HCN production, which are expressed differentially at sub-optimal temperatures (15 and 4°C). It was able to solubilize phosphate (17.6 μg of P2O5 ml−1 day−1), and produce IAA (3.7 μg ml−1 day−1), at 15°C. Qualitative detection of siderophore production and HCN were also observed at 15°C. At 4°C it was found to express all the plant growth promotion attributes. This bacterial isolate was able to positively influence and promote the growth and nutrient uptake parameters of wheat (cv. VL.802) under glasshouse conditions. Hence in the context, of cold wheat-growing environments, it is proposed that Pantoea dispersa 1A (MTCC 8706), could be deployed as an inoculant to attain the desired results of bacterization.

147 citations

Journal ArticleDOI
TL;DR: The psychrotrophic Pseudomonad strains could effectively provide a promising solution to overcome cold stress, which is major factor hindering wheat productivity under cold climatic condition.
Abstract: Twelve psychrotolerant Pseudomonad strains were selected on the basis of various plant growth-promoting (PGP) activities at cold temperature (4°C). The effect of inoculation with Pseudomonad strains on cold alleviation and growth of wheat seedling at cold temperature (8°C) was investigated under greenhouse condition. Inoculation with Pseudomonad strains significantly enhanced root/shoot biomass and nutrients uptake as compared to non-bacterized control at 60 days of plant growth. Bacterization significantly improved the level of cellular metabolites like chlorophyll, anthocyanin, free proline, total phenolics, starch content, physiologically available iron, proteins, and amino acids that are sign of alleviation of cold stress in wheat plants. Increased relative water content, reduced membrane injury (electrolyte leakage), and Na+/K+ ratio were also recorded in bacterized wheat plants. Electrolyte leakage and Na+/K+ were found inversely proportional to plant growth at cold temperature. Statistical analysis of twenty-three measured parameters revealed that uninoculated control was under cold stress while eight bacterial strains were positively alleviating cold stress in wheat plants. Thus, the psychrotrophic Pseudomonad strains could effectively provide a promising solution to overcome cold stress, which is major factor hindering wheat productivity under cold climatic condition.

120 citations

Journal ArticleDOI
20 Feb 2009-Biologia
TL;DR: Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude garlic rhizosphere from the Indian Himalayas, are reported here.
Abstract: Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude garlic rhizosphere from the Indian Himalayas, are reported here. The identity of the isolate was arrived on the basis of its biochemical features and sequencing of the 16S rRNA gene. The isolate grew and solubilized phosphate at temperatures ranging from 4 to 30°C. Besides solubilizing P it produced indole acetic acid (IAA) and hydrogen cyanide (HCN). Seed bacterization with the isolate significantly increased the percent germination, rate of germination, plant biomass and nutrient uptake of wheat seedlings. While Pseudomonas fragi is normally associated with the spoilage of dairy products stored at cold temperatures, this is an early report on the plant growth promoting ability of the bacterium.

120 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Book
01 Jan 2013
TL;DR: In this article, the authors defined the sources of heavy metals and metalloids in Soils and derived methods for the determination of Heavy Metals and Metalloids in soil.
Abstract: Preface.- Contributors.- List of Abbreviations.- Section 1: Basic Principles: Introduction.-Sources of Heavy Metals and Metalloids in Soils.- Chemistry of Heavy Metals and Metalloids in Soils.- Methods for the Determination of Heavy Metals and Metalloids in Soils.- Effects of Heavy Metals and Metalloids on Soil Organisms.- Soil-Plant Relationships of Heavy Metals and Metalloids.- Heavy Metals and Metalloids as Micronutrients for Plants and Animals.-Critical Loads of Heavy Metals for Soils.- Section 2: Key Heavy Metals And Metalloids: Arsenic.- Cadmium.- Chromium and Nickel.- Cobalt and Manganese.- Copper.-Lead.- Mercury.- Selenium.- Zinc.- Section 3: Other Heavy Metals And Metalloids Of Potential Environmental Significance: Antimony.- Barium.- Gold.- Molybdenum.- Silver.- Thallium.- Tin.- Tungsten.- Uranium.- Vanadium.- Glossary of Specialized Terms.- Index.

1,684 citations

Journal ArticleDOI
TL;DR: The latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

1,630 citations

Journal ArticleDOI
TL;DR: It is surmised that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage.
Abstract: There is a concerted understanding of the ability of root exudates to influence the structure of rhizosphere microbial communities. However, our knowledge of the connection between plant development, root exudation and microbiome assemblage is limited. Here, we analyzed the structure of the rhizospheric bacterial community associated with Arabidopsis at four time points corresponding to distinct stages of plant development: seedling, vegetative, bolting and flowering. Overall, there were no significant differences in bacterial community structure, but we observed that the microbial community at the seedling stage was distinct from the other developmental time points. At a closer level, phylum such as Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and specific genera within those phyla followed distinct patterns associated with plant development and root exudation. These results suggested that the plant can select a subset of microbes at different stages of development, presumably for specific functions. Accordingly, metatranscriptomics analysis of the rhizosphere microbiome revealed that 81 unique transcripts were significantly (P<0.05) expressed at different stages of plant development. For instance, genes involved in streptomycin synthesis were significantly induced at bolting and flowering stages, presumably for disease suppression. We surmise that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage.

987 citations

Journal ArticleDOI
TL;DR: The concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century are introduced and mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance.
Abstract: Microbes of the phytomicrobiome are associated with every plant tissue and, in combination with the plant form the holobiont. Plants regulate the composition and activity of their associated bacterial community carefully. These microbes provide a wide range of services and benefits to the plant; in return, the plant provides the microbial community with reduced carbon and other metabolites. Soils are generally a moist environment, rich in reduced carbon which supports extensive soil microbial communities. The rhizomicrobiome is of great importance to agriculture owing to the rich diversity of root exudates and plant cell debris that attract diverse and unique patterns of microbial colonization. Microbes of the rhizomicrobiome play key roles in nutrient acquisition and assimilation, improved soil texture, secreting, and modulating extracellular molecules such as hormones, secondary metabolites, antibiotics, and various signal compounds, all leading to enhancement of plant growth. The microbes and compounds they secrete constitute valuable biostimulants and play pivotal roles in modulating plant stress responses. Research has demonstrated that inoculating plants with plant-growth promoting rhizobacteria (PGPR) or treating plants with microbe-to-plant signal compounds can be an effective strategy to stimulate crop growth. Furthermore, these strategies can improve crop tolerance for the abiotic stresses (e.g., drought, heat, and salinity) likely to become more frequent as climate change conditions continue to develop. This discovery has resulted in multifunctional PGPR-based formulations for commercial agriculture, to minimize the use of synthetic fertilizers and agrochemicals. This review is an update about the role of PGPR in agriculture, from their collection to commercialization as low-cost commercial agricultural inputs. First, we introduce the concept and role of the phytomicrobiome and the agricultural context underlying food security in the 21st century. Next, mechanisms of plant growth promotion by PGPR are discussed, including signal exchange between plant roots and PGPR and how these relationships modulate plant abiotic stress responses via induced systemic resistance. On the application side, strategies are discussed to improve rhizosphere colonization by PGPR inoculants. The final sections of the paper describe the applications of PGPR in 21st century agriculture and the roadmap to commercialization of a PGPR-based technology.

914 citations