scispace - formally typeset
Search or ask a question
Author

Govindasamy Rajakumar

Bio: Govindasamy Rajakumar is an academic researcher from Konkuk University. The author has contributed to research in topics: Eclipta prostrata & Andrographis paniculata. The author has an hindex of 38, co-authored 92 publications receiving 5102 citations. Previous affiliations of Govindasamy Rajakumar include VIT University & C. Abdul Hakeem College.


Papers
More filters
Journal ArticleDOI
TL;DR: Copper nanoparticles synthesized using modified polyol method by the reduction of copper acetate hydrate in the presence of Tween 80 showed more inhibitory activity in bacteria than the fungus and it showed more zone of inhibition in E.coli than C. albicans.

509 citations

Journal ArticleDOI
TL;DR: The results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus mosquito larvae.
Abstract: The aim of this study was to investigate the larvicidal potential of the hexane, chloroform, ethyl acetate, acetone, methanol, and aqueous leaf extracts of Nelumbo nucifera Gaertn. (Nymphaeaceae) and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. The results recorded from UV–vis spectrum, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared support the biosynthesis and characterization of silver nanoparticles. Larvae were exposed to varying concentrations of plant extracts and synthesized silver nanoparticles for 24 h. All extracts showed moderate larvicidal effects; however, the maximum efficacy was observed in crude methanol, aqueous, and synthesized silver nanoparticles against the larvae of A. subpictus (LC50 = 8.89, 11.82, and 0.69 ppm; LC90 = 28.65, 36.06, and 2.15 ppm) and against the larvae of C. quinquefasciatus (LC50 = 9.51, 13.65, and 1.10 ppm; LC90 = 28.13, 35.83, and 3.59 ppm), respectively. These results suggest that the leaf methanol, aqueous extracts of N. nucifera, and green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friendly approach for the control of the A. subpictus and C. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the plant extracts and synthesized nanoparticles.

398 citations

Journal ArticleDOI
TL;DR: The results suggest that the synthesized AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the Culex tritaeniorhynchus and A. subpictus vectors.

334 citations

Journal ArticleDOI
TL;DR: The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.
Abstract: Interest in “green nanotechnology” in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

331 citations

Journal ArticleDOI
TL;DR: Green synthesized TiO2 NPs provides a promising approach can satisfy the requirement of large-scale industrial production bearing the advantage of low-cost, eco-friendly and reproducible.

328 citations


Cited by
More filters
01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Journal ArticleDOI
TL;DR: Most of the plants used in metal nanoparticle synthesis are shown in this article, and the advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of nanoparticle formation in plants.

2,424 citations

Journal ArticleDOI
TL;DR: The antibacterial mechanisms of NPs against bacteria and the factors that are involved are discussed and the limitations of current research are discussed.
Abstract: Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.

2,178 citations

Journal ArticleDOI
TL;DR: In this paper, a review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles.

1,904 citations

Journal ArticleDOI
TL;DR: The methods of making nanoparticles using plant extracts are reviewed, methods of particle characterization are reviewed and potential applications of the particles in medicine are discussed.

1,706 citations