scispace - formally typeset
Search or ask a question
Author

Gozde Bozdagi Akar

Bio: Gozde Bozdagi Akar is an academic researcher from Middle East Technical University. The author has contributed to research in topics: Video quality & Hyperspectral imaging. The author has an hindex of 22, co-authored 143 publications receiving 1883 citations. Previous affiliations of Gozde Bozdagi Akar include Scientific and Technological Research Council of Turkey & Heinrich Hertz Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance, but the best MSSD performance remains limited, and multi-tasking DL models designed to segment all organs are observed to perform worse compared to organ-specific ones.

338 citations

Journal ArticleDOI
TL;DR: 3DTV coding technology is maturating, however, the research area is relatively young compared to coding of other types of media, and there is still a lot of room for improvement and new development of algorithms.
Abstract: Research efforts on 3DTV technology have been strengthened worldwide recently, covering the whole media processing chain from capture to display. Different 3DTV systems rely on different 3D scene representations that integrate various types of data. Efficient coding of these data is crucial for the success of 3DTV. Compression of pixel-type data including stereo video, multiview video, and associated depth or disparity maps extends available principles of classical video coding. Powerful algorithms and open international standards for multiview video coding and coding of video plus depth data are available and under development, which will provide the basis for introduction of various 3DTV systems and services in the near future. Compression of 3D mesh models has also reached a high level of maturity. For static geometry, a variety of powerful algorithms are available to efficiently compress vertices and connectivity. Compression of dynamic 3D geometry is currently a more active field of research. Temporal prediction is an important mechanism to remove redundancy from animated 3D mesh sequences. Error resilience is important for transmission of data over error prone channels, and multiple description coding (MDC) is a suitable way to protect data. MDC of still images and 2D video has already been widely studied, whereas multiview video and 3D meshes have been addressed only recently. Intellectual property protection of 3D data by watermarking is a pioneering research area as well. The 3D watermarking methods in the literature are classified into three groups, considering the dimensions of the main components of scene representations and the resulting components after applying the algorithm. In general, 3DTV coding technology is maturating. Systems and services may enter the market in the near future. However, the research area is relatively young compared to coding of other types of media. Therefore, there is still a lot of room for improvement and new development of algorithms.

326 citations

Journal ArticleDOI
TL;DR: The results show that the match ratio between the obtained learner's learning style using the proposed learner model and those obtained by the questionnaires traditionally used for learning style assessment is consistent for most of the dimensions of Felder-Silverman learning style.
Abstract: A desirable characteristic for an e-learning system is to provide the learner the most appropriate information based on his requirements and preferences. This can be achieved by capturing and utilizing the learner model. Learner models can be extracted based on personality factors like learning styles, behavioral factors like user's browsing history and knowledge factors like user's prior knowledge. In this paper, we address the problem of extracting the learner model based on Felder-Silverman learning style model. The target learners in this problem are the ones studying basic science. Using NBTree classification algorithm in conjunction with Binary Relevance classifier, the learners are classified based on their interests. Then, learners' learning styles are detected using these classification results. Experimental results are also conducted to evaluate the performance of the proposed automated learner modeling approach. The results show that the match ratio between the obtained learner's learning style using the proposed learner model and those obtained by the questionnaires traditionally used for learning style assessment is consistent for most of the dimensions of Felder-Silverman learning style.

172 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel endmember extraction and hyperspectral unmixing scheme, so-called EndNet, that is based on a two-staged autoencoder network that is scalable for large-scale data and it can be accelerated on graphical processing units.
Abstract: Data acquired from multichannel sensors are a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for previous sensors, and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures and their fractions from hyperspectral data. In this paper, we propose a novel endmember extraction and hyperspectral unmixing scheme, so-called EndNet , that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric [i.e., spectral angle distance (SAD) instead of inner product] to achieve an optimum solution. Moreover, we present a novel loss function that is composed of a Kullback–Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers, such as nonlinearity and sparsity for autoencoder networks. Finally, due to the stochastic-gradient-based approach, the method is scalable for large-scale data and it can be accelerated on graphical processing units. To demonstrate the superiority of our proposed method, we conduct extensive experiments on several well-known data sets. The results confirm that the proposed method considerably improves the performance compared to the state-of-the-art techniques in the literature.

137 citations

Book ChapterDOI
TL;DR: The results of the competition are presented and it is shown that verification results on this protocol have increased in performance by a factor of 3.
Abstract: In the year 2000 a competition was organised to collect face verification results on an identical, publicly available data set using a standard evaluation protocol. The database used was the Xm2vts database along with the Lausanne protocol [14]. Four different institutions submitted results on the database which were subsequently published in [13]. Three years later, a second contest using the same dataset and protocol was organised as part of AVBPA 2003. This time round seven seperate institutions submitted results to the competition. This paper presents the results of the competition and shows that verification results on this protocol have increased in performance by a factor of 3.

99 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on deep facial expression recognition (FER) can be found in this article, including datasets and algorithms that provide insights into the intrinsic problems of deep FER, including overfitting caused by lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias.
Abstract: With the transition of facial expression recognition (FER) from laboratory-controlled to challenging in-the-wild conditions and the recent success of deep learning techniques in various fields, deep neural networks have increasingly been leveraged to learn discriminative representations for automatic FER. Recent deep FER systems generally focus on two important issues: overfitting caused by a lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias. In this paper, we provide a comprehensive survey on deep FER, including datasets and algorithms that provide insights into these intrinsic problems. First, we describe the standard pipeline of a deep FER system with the related background knowledge and suggestions of applicable implementations for each stage. We then introduce the available datasets that are widely used in the literature and provide accepted data selection and evaluation principles for these datasets. For the state of the art in deep FER, we review existing novel deep neural networks and related training strategies that are designed for FER based on both static images and dynamic image sequences, and discuss their advantages and limitations. Competitive performances on widely used benchmarks are also summarized in this section. We then extend our survey to additional related issues and application scenarios. Finally, we review the remaining challenges and corresponding opportunities in this field as well as future directions for the design of robust deep FER systems.

712 citations

Journal ArticleDOI
01 Aug 2014
TL;DR: The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy, and common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super- resolution algorithms, and the most commonly employed databases are discussed.
Abstract: Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real-world problems in different fields, from satellite and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy. For each of the groups in the taxonomy, the basic concepts of the algorithms are first explained and then the paths through which each of these groups have evolved are given in detail, by mentioning the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super-resolution algorithms, and the most commonly employed databases are discussed.

602 citations