scispace - formally typeset
Search or ask a question
Author

Grace Y. Chen

Other affiliations: New York University
Bio: Grace Y. Chen is an academic researcher from University of Michigan. The author has contributed to research in topics: Gut flora & Innate immune system. The author has an hindex of 30, co-authored 58 publications receiving 10783 citations. Previous affiliations of Grace Y. Chen include New York University.


Papers
More filters
Journal ArticleDOI
TL;DR: The triggers and receptor pathways that result in sterile inflammation and its impact on human health are reviewed.
Abstract: Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.

2,481 citations

Journal ArticleDOI
TL;DR: Understanding the interaction of the microbiota with pathogens and the host might provide new insights into the pathogenesis of disease, as well as novel avenues for preventing and treating intestinal and systemic disorders.
Abstract: The mammalian intestine is colonized by trillions of microorganisms, most of which are bacteria that have co-evolved with the host in a symbiotic relationship. The collection of microbial populations that reside on and in the host is commonly referred to as the microbiota. A principal function of the microbiota is to protect the intestine against colonization by exogenous pathogens and potentially harmful indigenous microorganisms via several mechanisms, which include direct competition for limited nutrients and the modulation of host immune responses. Conversely, pathogens have developed strategies to promote their replication in the presence of competing microbiota. Breakdown of the normal microbial community increases the risk of pathogen infection, the overgrowth of harmful pathobionts and inflammatory disease. Understanding the interaction of the microbiota with pathogens and the host might provide new insights into the pathogenesis of disease, as well as novel avenues for preventing and treating intestinal and systemic disorders.

1,653 citations

Journal ArticleDOI
TL;DR: The mechanisms that regulate the ability of the microbiota to restrain pathogen growth are complex and include competitive metabolic interactions, localization to intestinal niches and induction of host immune responses.
Abstract: A dense resident microbial community in the gut, referred as the commensal microbiota, coevolved with the host and is essential for many host physiological processes that include enhancement of the intestinal epithelial barrier, development of the immune system and acquisition of nutrients. A major function of the microbiota is protection against colonization by pathogens and overgrowth of indigenous pathobionts that can result from the disruption of the healthy microbial community. The mechanisms that regulate the ability of the microbiota to restrain pathogen growth are complex and include competitive metabolic interactions, localization to intestinal niches and induction of host immune responses. Pathogens, in turn, have evolved strategies to escape from commensal-mediated resistance to colonization. Thus, the interplay between commensals and pathogens or indigenous pathobionts is critical for controlling infection and disease. Understanding pathogen-commensal interactions may lead to new therapeutic approaches to treating infectious diseases.

1,216 citations

Journal ArticleDOI
TL;DR: The gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium was compared to generate a 186-gene "invasiveness" gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer.
Abstract: BACKGROUND Breast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene "invasiveness" gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer.

1,006 citations

Journal ArticleDOI
TL;DR: The NOD-like receptors are a specialized group of intracellular receptors that represent a key component of the host innate immune system and their ability to regulate nuclear factor-kappa B signaling, interleukin-1-beta production, and cell death indicates that they are crucial to the pathogenesis of a variety of inflammatory human diseases.
Abstract: The NOD-like receptors (NLRs) are a specialized group of intracellular receptors that represent a key component of the host innate immune system. Since the discovery of the first NLR almost 10 years ago, the study of this special class of microbial sensors has burgeoned; consequently, a better understanding of the mechanism by which these receptors recognize microbes and other danger signals and of how they activate inflammatory signaling pathways has emerged. Moreover, in addition to their primary role in host defense against invading pathogens, their ability to regulate nuclear factor-kappa B (NF-kappaB) signaling, interleukin-1-beta (IL-1beta) production, and cell death indicates that they are crucial to the pathogenesis of a variety of inflammatory human diseases.

683 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations

Journal ArticleDOI
TL;DR: D diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer.
Abstract: Purpose To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression–based “intrinsic” subtypes luminal A, luminal B, HER2-enriched, and basal-like. Methods A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. Results The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for t...

3,913 citations

Journal ArticleDOI
TL;DR: The key features of the life of a neutrophil are discussed, from its release from bone marrow to its death, and the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites are explained.
Abstract: Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.

3,898 citations

Journal ArticleDOI
02 Jun 2016-Cell
TL;DR: Data is reviewed supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs), which affect various physiological processes and may contribute to health and disease.

3,363 citations