scispace - formally typeset
Search or ask a question
Author

Grady Booch

Other affiliations: United States Air Force Academy
Bio: Grady Booch is an academic researcher from IBM. The author has contributed to research in topics: Booch method & Unified Modeling Language. The author has an hindex of 37, co-authored 134 publications receiving 32464 citations. Previous affiliations of Grady Booch include United States Air Force Academy.


Papers
More filters
Book
01 Jan 1999
TL;DR: In The Unified Modeling Language User Guide, the original developers of the UML provide a tutorial to the core aspects of the language in a two-color format designed to facilitate learning.
Abstract: In The Unified Modeling Language User Guide, the original developers of the UML--Grady Booch, James Rumbaugh, and Ivar Jacobson--provide a tutorial to the core aspects of the language in a two-color format designed to facilitate learning. Starting with a conceptual model of the UML, the book progressively applies the UML to a series of increasingly complex modeling problems across a variety of application domains. This example-driven approach helps readers quickly understand and apply the UML. For more advanced developers, the book includes a learning track focused on applying the UML to advanced modeling problems.With The Unified Modeling Language User Guide, readers will:Understand what the UML is, what it is not, and why it is relevant to the development of software-intensive systemsMaster the vocabulary, rules, and idioms of the UML in order to "speak" the language effectivelyLearn how to apply the UML to a number of common modeling problemsSee illustrations of the UML's use interspersed with use cases for specific UML features, andGain insight into the UML from the original creators of the UML.

6,634 citations

01 Jan 1999
TL;DR: The Unified Modeling Language Reference Manual as discussed by the authors provides an excellent real-world guide to working with UML, from structured design methods of the '60s and '70s to the competing object-oriented design standards that were unified to create UML.
Abstract: Written by the three pioneers behind the Unified Modeling Language (UML) standard, The Unified Modeling Language Reference Manual provides an excellent real-world guide to working with UML. This title provides expert knowledge on all facets of today's UML standard, helping developers who are encountering UML on the job for the first time to be more productive. The book begins with a history of UML, from structured design methods of the '60s and '70s to the competing object-oriented design standards that were unified in 1997 to create UML. For the novice, the authors illustrate key diagram types such as class, use case, state machine, activity, and implementation. (Of course, learning these basic diagram types is what UML is all about. The authors use an easy-to-understand ticket-booking system for many of their examples.) After a tour of basic document types, The Unified Modeling Language Reference Manual provides an alphabetical listing of more than 350 UML terms. Entries range from a sentence or two to several pages in length. (Class, operation, and use case are just a few of the important terms that are covered.) Though you will certainly need to be acquainted with software engineering principles, this reference will serve the working software developer well. As the authors note, this isn't UML for Dummies, but neither is it an arcane academic treatise. The authors succeed in delivering a readable reference that will answer any UML question, no matter how common or obscure. --Richard Dragan

4,531 citations

Book
01 Jan 1999
TL;DR: This book provides a comprehensive guide to The Objectory Software Development Process derived from the three market leading OOA&D methods: Booch, OOSE (Use-Case), and OMT.
Abstract: The three amigos of software development come together again to bring you an introduction to a new standard for creating today's software that will definitely be useful for any developer or manager familiar with UML. This book provides a comprehensive guide to The Objectory Software Development Process derived from the three market leading OOA&D methods: Booch, OOSE (Use-Case), and OMT. Overviews of the four basic principles of the Unified Process are complemented by excellent use case examples that are drawn from such areas as banking and inventory control.

3,486 citations

Book
01 Dec 1998
TL;DR: This title provides expert knowledge on all facets of today's UML standard, helping developers who are encountering UML on the job for the first time to be more productive.
Abstract: Written by the three pioneers behind the Unified Modeling Language (UML) standard, The Unified Modeling Language Reference Manual provides an excellent real-world guide to working with UML. This title provides expert knowledge on all facets of today's UML standard, helping developers who are encountering UML on the job for the first time to be more productive. The book begins with a history of UML, from structured design methods of the '60s and '70s to the competing object-oriented design standards that were unified in 1997 to create UML. For the novice, the authors illustrate key diagram types such as class, use case, state machine, activity, and implementation. (Of course, learning these basic diagram types is what UML is all about. The authors use an easy-to-understand ticket-booking system for many of their examples.) After a tour of basic document types, The Unified Modeling Language Reference Manual provides an alphabetical listing of more than 350 UML terms. Entries range from a sentence or two to several pages in length. (Class, operation, and use case are just a few of the important terms that are covered.) Though you will certainly need to be acquainted with software engineering principles, this reference will serve the working software developer well. As the authors note, this isn't UML for Dummies, but neither is it an arcane academic treatise. The authors succeed in delivering a readable reference that will answer any UML question, no matter how common or obscure. --Richard Dragan

3,456 citations

Book
01 Jan 1990
TL;DR: This chapter discusses the development of Object-Oriented Programming Languages and the Structure of Complex Systems, and the role of Classification in this development.
Abstract: I. CONCEPTS. 1. Complexity. The Inherent Complexity of Software. The Structure of Complex Systems. Bringing Order to Chaos. On Designing Complex Systems. Sidebar: Categories of Analysis and Design Methods. 2. The Object Model. The Evolution of the Object Model. Elements of the Object Model. Applying the Object Model. Sidebar: Foundations of the Object Model. 3. Classes and Objects. The Nature of an Object. Relationships Among Objects. The Nature of a Class. Relationships Among Classes. The Interplay of Classes and Objects. On Building Quality Classes and Objects. Sidebar: Invoking a Method. 4. Classification. The Importance of Proper Classification. Identifying Classes and Objects. Key Abstractions and Mechanisms. Sidebar: A Problem of Classification. II. THE METHOD. 5 .The Notation. Elements of the Notation. Class Diagrams. State Transition Diagrams. Object Diagrams. Interaction Diagrams. Module Diagrams. Process Diagrams. Applying the Notation. 6 .The Process. First Principles. The Micro Development Process. The Macro Development Process. 7. Pragmatics. Management and Planning. Staffing. Release Management. Reuse. Quality Assurance and Metrics. Documentation. Tools. Special Topics. The Benefits and Risks of Object-Oriented Development. III. APPLICATIONS. 8. Data Acquisition: Weather Monitoring Station. Analysis. Design. Evolution. Maintenance. Sidebar: Weather Monitorint Station Requirements. 9. Frameworks: Foundation Class Library. Analysis. Design. Evolution. Maintenance. Sidebar: Foundation Class Library Requirements. 10. Client/Server Computing: Inventory Tracking. Analysis. Design. Evolution. Maintenance. Sidebar: Inventory Tracking System Requirements. 11. Artificial Intelligence Cryptanalysis. Analysis. Design. Evolution. Maintenance. Sidebar: Cryptanalysis Requirements. 12. Command and Control Traffic Management. Analysis. Design. Evolution. Maintenance. Sidebar: Traffic Management System Requirements. Afterword. Appendix: Object-Oriented Programming Languages. A.1 Concepts. A.2 Smalltalk. A.3 Object Pascal. A.4 C++. A.5 Common Lisp Object System. A.6 Ada. A.7 Eiffel. A.8 Other Object-Oriented Programming Languages. Notes. Glossary. Classified Bibliography. A. Classification. B. Object-Oriented Analysis. C. Object-Oriented Applications. D. Object-Oriented Architectures. E. Object Oriented Databases. F. Object-Oriented Design. G. Object-Oriented Programming. H. Software Engineering. I. Special References. J. Theory. K. Tools and Environments. Index. 0805353402T04062001

3,216 citations


Cited by
More filters
Journal ArticleDOI
S. Agostinelli1, John Allison2, K. Amako3, J. Apostolakis4, Henrique Araujo5, P. Arce4, Makoto Asai6, D. Axen4, S. Banerjee7, G. Barrand, F. Behner4, Lorenzo Bellagamba8, J. Boudreau9, L. Broglia10, A. Brunengo8, H. Burkhardt4, Stephane Chauvie, J. Chuma11, R. Chytracek4, Gene Cooperman12, G. Cosmo4, P. V. Degtyarenko13, Andrea Dell'Acqua4, G. Depaola14, D. Dietrich15, R. Enami, A. Feliciello, C. Ferguson16, H. Fesefeldt4, Gunter Folger4, Franca Foppiano, Alessandra Forti2, S. Garelli, S. Gianì4, R. Giannitrapani17, D. Gibin4, J. J. Gomez Y Cadenas4, I. González4, G. Gracia Abril4, G. Greeniaus18, Walter Greiner15, Vladimir Grichine, A. Grossheim4, Susanna Guatelli, P. Gumplinger11, R. Hamatsu19, K. Hashimoto, H. Hasui, A. Heikkinen20, A. S. Howard5, Vladimir Ivanchenko4, A. Johnson6, F.W. Jones11, J. Kallenbach, Naoko Kanaya4, M. Kawabata, Y. Kawabata, M. Kawaguti, S.R. Kelner21, Paul R. C. Kent22, A. Kimura23, T. Kodama24, R. P. Kokoulin21, M. Kossov13, Hisaya Kurashige25, E. Lamanna26, Tapio Lampén20, V. Lara4, Veronique Lefebure4, F. Lei16, M. Liendl4, W. S. Lockman, Francesco Longo27, S. Magni, M. Maire, E. Medernach4, K. Minamimoto24, P. Mora de Freitas, Yoshiyuki Morita3, K. Murakami3, M. Nagamatu24, R. Nartallo28, Petteri Nieminen28, T. Nishimura, K. Ohtsubo, M. Okamura, S. W. O'Neale29, Y. Oohata19, K. Paech15, J Perl6, Andreas Pfeiffer4, Maria Grazia Pia, F. Ranjard4, A.M. Rybin, S.S Sadilov4, E. Di Salvo8, Giovanni Santin27, Takashi Sasaki3, N. Savvas2, Y. Sawada, Stefan Scherer15, S. Sei24, V. Sirotenko4, David J. Smith6, N. Starkov, H. Stoecker15, J. Sulkimo20, M. Takahata23, Satoshi Tanaka30, E. Tcherniaev4, E. Safai Tehrani6, M. Tropeano1, P. Truscott31, H. Uno24, L. Urbán, P. Urban32, M. Verderi, A. Walkden2, W. Wander33, H. Weber15, J.P. Wellisch4, Torre Wenaus34, D.C. Williams, Douglas Wright6, T. Yamada24, H. Yoshida24, D. Zschiesche15 
TL;DR: The Gelfant 4 toolkit as discussed by the authors is a toolkit for simulating the passage of particles through matter, including a complete range of functionality including tracking, geometry, physics models and hits.
Abstract: G eant 4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

18,904 citations

Book
01 Jan 1999
TL;DR: In The Unified Modeling Language User Guide, the original developers of the UML provide a tutorial to the core aspects of the language in a two-color format designed to facilitate learning.
Abstract: In The Unified Modeling Language User Guide, the original developers of the UML--Grady Booch, James Rumbaugh, and Ivar Jacobson--provide a tutorial to the core aspects of the language in a two-color format designed to facilitate learning. Starting with a conceptual model of the UML, the book progressively applies the UML to a series of increasingly complex modeling problems across a variety of application domains. This example-driven approach helps readers quickly understand and apply the UML. For more advanced developers, the book includes a learning track focused on applying the UML to advanced modeling problems.With The Unified Modeling Language User Guide, readers will:Understand what the UML is, what it is not, and why it is relevant to the development of software-intensive systemsMaster the vocabulary, rules, and idioms of the UML in order to "speak" the language effectivelyLearn how to apply the UML to a number of common modeling problemsSee illustrations of the UML's use interspersed with use cases for specific UML features, andGain insight into the UML from the original creators of the UML.

6,634 citations

Book
02 Sep 2011
TL;DR: This research addresses the needs for software measures in object-orientation design through the development and implementation of a new suite of metrics for OO design, and suggests ways in which managers may use these metrics for process improvement.
Abstract: Given the central role that software development plays in the delivery and application of information technology, managers are increasingly focusing on process improvement in the software development area. This demand has spurred the provision of a number of new and/or improved approaches to software development, with perhaps the most prominent being object-orientation (OO). In addition, the focus on process improvement has increased the demand for software measures, or metrics with which to manage the process. The need for such metrics is particularly acute when an organization is adopting a new technology for which established practices have yet to be developed. This research addresses these needs through the development and implementation of a new suite of metrics for OO design. Metrics developed in previous research, while contributing to the field's understanding of software development processes, have generally been subject to serious criticisms, including the lack of a theoretical base. Following Wand and Weber (1989), the theoretical base chosen for the metrics was the ontology of Bunge (1977). Six design metrics are developed, and then analytically evaluated against Weyuker's (1988) proposed set of measurement principles. An automated data collection tool was then developed and implemented to collect an empirical sample of these metrics at two field sites in order to demonstrate their feasibility and suggest ways in which managers may use these metrics for process improvement. >

5,476 citations

Journal ArticleDOI
TL;DR: This work draws from the vast body of research on the technology acceptance model (TAM) to develop a comprehensive nomological network of the determinants of individual level IT adoption and use and present a research agenda focused on potential pre- and postimplementation interventions that can enhance employees' adopted and use of IT.
Abstract: Prior research has provided valuable insights into how and why employees make a decision about the adoption and use of information technologies (ITs) in the workplace. From an organizational point of view, however, the more important issue is how managers make informed decisions about interventions that can lead to greater acceptance and effective utilization of IT. There is limited research in the IT implementation literature that deals with the role of interventions to aid such managerial decision making. Particularly, there is a need to understand how various interventions can influence the known determinants of IT adoption and use. To address this gap in the literature, we draw from the vast body of research on the technology acceptance model (TAM), particularly the work on the determinants of perceived usefulness and perceived ease of use, and: (i) develop a comprehensive nomological network (integrated model) of the determinants of individual level (IT) adoption and use; (ii) empirically test the proposed integrated model; and (iii) present a research agenda focused on potential pre- and postimplementation interventions that can enhance employees' adoption and use of IT. Our findings and research agenda have important implications for managerial decision making on IT implementation in organizations.

5,246 citations