scispace - formally typeset
Search or ask a question
Author

Graham R. Fleming

Bio: Graham R. Fleming is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Excited state & Spectroscopy. The author has an hindex of 113, co-authored 573 publications receiving 51107 citations. Previous affiliations of Graham R. Fleming include University of California, San Francisco & University of California.


Papers
More filters
Journal ArticleDOI
12 Apr 2007-Nature
TL;DR: Previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex are extended, and direct evidence is obtained for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system is obtained.
Abstract: Photosynthesis provides the primary energy source for almost all life on Earth. One of its remarkable features is the efficiency with which energy is transferred within the light harvesting complexes comprising the photosynthetic apparatus. Suspicions that quantum trickery might be involved in the energy transfer processes at the core of photosynthesis are now confirmed by a new spectroscopic study. The study reveals electronic quantum beats characteristic of wavelike energy motion within the bacteriochlorophyll complex from the green sulphur bacterium Chlorobium tepidum. This wavelike characteristic of the energy transfer process can explain the extreme efficiency of photosynthesis, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. A spectroscopic study has directly monitored the quantum beating arising from remarkably long-lived electronic quantum coherence in a bacteriochlorophyll complex. This wavelike characteristic of the energy transfer process can explain the extreme efficiency of photosynthesis, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. Photosynthetic complexes are exquisitely tuned to capture solar light efficiently, and then transmit the excitation energy to reaction centres, where long term energy storage is initiated. The energy transfer mechanism is often described by semiclassical models that invoke ‘hopping’ of excited-state populations along discrete energy levels1,2. Two-dimensional Fourier transform electronic spectroscopy3,4,5 has mapped6 these energy levels and their coupling in the Fenna–Matthews–Olson (FMO) bacteriochlorophyll complex, which is found in green sulphur bacteria and acts as an energy ‘wire’ connecting a large peripheral light-harvesting antenna, the chlorosome, to the reaction centre7,8,9. The spectroscopic data clearly document the dependence of the dominant energy transport pathways on the spatial properties of the excited-state wavefunctions of the whole bacteriochlorophyll complex6,10. But the intricate dynamics of quantum coherence, which has no classical analogue, was largely neglected in the analyses—even though electronic energy transfer involving oscillatory populations of donors and acceptors was first discussed more than 70 years ago11, and electronic quantum beats arising from quantum coherence in photosynthetic complexes have been predicted12,13 and indirectly observed14. Here we extend previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex, and obtain direct evidence for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system. The quantum coherence manifests itself in characteristic, directly observable quantum beating signals among the excitons within the Chlorobium tepidum FMO complex at 77 K. This wavelike characteristic of the energy transfer within the photosynthetic complex can explain its extreme efficiency, in that it allows the complexes to sample vast areas of phase space to find the most efficient path.

2,981 citations

Journal ArticleDOI
TL;DR: The principles learned from studies of various natural antenna complexes are described and how to elucidate strategies for designing light-harvesting systems are suggested to be used for solar fuel production, to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control, or to transfer excitons over long distances.
Abstract: Solar fuel production often starts with the energy from light being absorbed by an assembly of molecules; this electronic excitation is subsequently transferred to a suitable acceptor. For example, in photosynthesis, antenna complexes capture sunlight and direct the energy to reaction centres that then carry out the associated chemistry. In this Review, we describe the principles learned from studies of various natural antenna complexes and suggest how to elucidate strategies for designing light-harvesting systems. We envisage that such systems will be used for solar fuel production, to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control, or to transfer excitons over long distances. Also described are the notable properties of light-harvesting chromophores, spatial-energetic landscapes, the roles of excitonic states and quantum coherence, as well as how antennas are regulated and photoprotected.

1,558 citations

Journal ArticleDOI
13 May 2011-Science
TL;DR: Natural photosynthesis is compared with present technologies for photovoltaic-driven electrolysis of water to produce hydrogen and opportunities in which the frontiers of synthetic biology might be used to enhance natural photosynthesis for improved solar energy conversion efficiency are considered.
Abstract: Comparing photosynthetic and photovoltaic efficiencies is not a simple issue. Although both processes harvest the energy in sunlight, they operate in distinctly different ways and produce different types of products: biomass or chemical fuels in the case of natural photosynthesis and nonstored electrical current in the case of photovoltaics. In order to find common ground for evaluating energy-conversion efficiency, we compare natural photosynthesis with present technologies for photovoltaic-driven electrolysis of water to produce hydrogen. Photovoltaic-driven electrolysis is the more efficient process when measured on an annual basis, yet short-term yields for photosynthetic conversion under optimal conditions come within a factor of 2 or 3 of the photovoltaic benchmark. We consider opportunities in which the frontiers of synthetic biology might be used to enhance natural photosynthesis for improved solar energy conversion efficiency.

1,379 citations

Journal ArticleDOI
09 Jun 1994-Nature
TL;DR: In this paper, the authors present experimental measurements of the ultrafast solvation dynamics of a coumarin salt in water, and combine them with computer simulations to demonstrate that a solvent response on a timescale faster than 50 fs can dominate aqueous solvation dynamic.
Abstract: THE timescale of the response of solvent molecules to electronic rearrangement of solute molecules has a critical influence on the rates of chemical reactions in liquids1–10. In particular, if the solvent cannot adapt quickly enough to this rearrangement as the reactants pass through the transition state, the evolving products may recross the free-energy barrier, reducing the reaction rate. Computer simulations have shown11–18 that the response of a solvent to a change in solute charge distribution is strongly bimodal: there is an initial ultrafast response owing to inertial (mainly libra-tional) motions of the solvent molecules, followed by a slow component owing to diffusive motions. Water seems to be by far the 'fastest' solvent studied so far: simulations predict that well over half of the solvation response for atomic solutes is inertial, happening on a timescale of about 20 femtoseconds12,13. The presence of this ultrafast component implies that solvent friction plays an important role in many aqueous charge-transfer processes9,10,19–21. Experimental verification of this prediction has been lacking, however, in part because of the difficulty of obtaining sufficient time resolution. Here we present experimental measurements of the ultrafast solvation dynamics of a coumarin salt in water. When considered in conjunction with computer simulations, our results demonstrate that a solvent response on a timescale faster than 50 fs can dominate aqueous solvation dynamics.

1,180 citations

Journal ArticleDOI
31 Mar 2005-Nature
TL;DR: This work directly measures electronic couplings in a molecular complex, the Fenna–Matthews–Olson photosynthetic light-harvesting protein, and finds distinct energy transport pathways that depend sensitively on the detailed spatial properties of the delocalized excited-state wavefunctions of the whole pigment–protein complex.
Abstract: Time-resolved optical spectroscopy is widely used to study vibrational and electronic dynamics by monitoring transient changes in excited state populations on a femtosecond timescale1. Yet the fundamental cause of electronic and vibrational dynamics—the coupling between the different energy levels involved—is usually inferred only indirectly. Two-dimensional femtosecond infrared spectroscopy based on the heterodyne detection of three-pulse photon echoes2,3,4,5,6,7 has recently allowed the direct mapping of vibrational couplings, yielding transient structural information. Here we extend the approach to the visible range3,8 and directly measure electronic couplings in a molecular complex, the Fenna–Matthews–Olson photosynthetic light-harvesting protein9,10. As in all photosynthetic systems, the conversion of light into chemical energy is driven by electronic couplings that ensure the efficient transport of energy from light-capturing antenna pigments to the reaction centre11. We monitor this process as a function of time and frequency and show that excitation energy does not simply cascade stepwise down the energy ladder. We find instead distinct energy transport pathways that depend sensitively on the detailed spatial properties of the delocalized excited-state wavefunctions of the whole pigment–protein complex.

1,178 citations


Cited by
More filters
Book
01 Jan 1983
TL;DR: This book describes the fundamental aspects of fluorescence, the biochemical applications of this methodology, and the instrumentation used in fluorescence spectroscopy.
Abstract: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles."

28,073 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations