scispace - formally typeset
Search or ask a question
Author

Graziano Pesole

Bio: Graziano Pesole is an academic researcher from University of Bari. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 69, co-authored 362 publications receiving 29710 citations. Previous affiliations of Graziano Pesole include University of Padua & University of Bologna.


Papers
More filters
Journal ArticleDOI
Piero Carninci, Takeya Kasukawa1, Shintaro Katayama, Julian Gough  +194 moreInstitutions (36)
02 Sep 2005-Science
TL;DR: Detailed polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
Abstract: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

3,412 citations

Journal ArticleDOI
26 Aug 2007-Nature
TL;DR: A high-quality draft of the genome sequence of grapevine is obtained from a highly homozygous genotype, revealing the contribution of three ancestral genomes to the grapevine haploid content and explaining the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
Abstract: The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.

3,311 citations

Journal ArticleDOI
Andrew G. Clark1, Michael B. Eisen2, Michael B. Eisen3, Douglas Smith  +426 moreInstitutions (70)
08 Nov 2007-Nature
TL;DR: These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.
Abstract: Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

2,057 citations

Journal ArticleDOI
Yasushi Okazaki, Masaaki Furuno, Takeya Kasukawa1, Jun Adachi, Hidemasa Bono, S. Kondo, Itoshi Nikaido2, Naoki Osato, Rintaro Saito3, Harukazu Suzuki, Itaru Yamanaka, H. Kiyosawa2, Ken Yagi, Yasuhiro Tomaru4, Yuki Hasegawa2, A. Nogami2, Christian Schönbach, Takashi Gojobori, Richard M. Baldarelli, David P. Hill, Carol J. Bult, David A. Hume5, John Quackenbush6, Lynn M. Schriml7, Alexander Kanapin, Hideo Matsuda8, Serge Batalov9, Kirk W. Beisel10, Judith A. Blake, Dirck W. Bradt, Vladimir Brusic, Cyrus Chothia11, Lori E. Corbani, S. Cousins, Emiliano Dalla, Tommaso A. Dragani, Colin F. Fletcher12, Colin F. Fletcher9, Alistair R. R. Forrest5, K. S. Frazer13, Terry Gaasterland14, Manuela Gariboldi, Carmela Gissi15, Adam Godzik16, Julian Gough11, Sean M. Grimmond5, Stefano Gustincich17, Nobutaka Hirokawa18, Ian J. Jackson19, Erich D. Jarvis20, Akio Kanai3, Hideya Kawaji1, Hideya Kawaji8, Yuka Imamura Kawasawa21, Rafal M. Kedzierski21, Benjamin L. King, Akihiko Konagaya, Igor V. Kurochkin, Yong-Hwan Lee6, Boris Lenhard22, Paul A. Lyons23, Donna Maglott7, Lois J. Maltais, Luigi Marchionni, Louise M. McKenzie, Harukata Miki18, Takeshi Nagashima, Koji Numata3, Toshihisa Okido, William J. Pavan7, Geo Pertea6, Graziano Pesole15, Nikolai Petrovsky24, Ramesh S. Pillai, Joan Pontius7, D. Qi, Sridhar Ramachandran, Timothy Ravasi5, Jonathan C. Reed16, Deborah J Reed, Jeffrey G. Reid, Brian Z. Ring, M. Ringwald, Albin Sandelin22, Claudio Schneider, Colin A. Semple19, Mitsutoshi Setou18, K. Shimada25, Razvan Sultana6, Yoichi Takenaka8, Martin S. Taylor19, Rohan D. Teasdale5, Masaru Tomita3, Roberto Verardo, Lukas Wagner7, Claes Wahlestedt22, Y. Wang6, Yoshiki Watanabe25, Christine A. Wells5, Laurens G. Wilming26, Anthony Wynshaw-Boris27, Masashi Yanagisawa21, Ivana V. Yang6, L. Yang, Zheng Yuan5, Mihaela Zavolan14, Yunhui Zhu, Anne M. Zimmer28, Piero Carninci, N. Hayatsu, Tomoko Hirozane-Kishikawa, Hideaki Konno, M. Nakamura, Naoko Sakazume, K. Sato4, Toshiyuki Shiraki, Kazunori Waki, Jun Kawai, Katsunori Aizawa, Takahiro Arakawa, S. Fukuda, A. Hara, W. Hashizume, K. Imotani, Y. Ishii, Masayoshi Itoh, Ikuko Kagawa, A. Miyazaki, K. Sakai, D. Sasaki, K. Shibata, Akira Shinagawa, Ayako Yasunishi, Masayasu Yoshino, Robert H. Waterston29, Eric S. Lander30, Jane Rogers26, Ewan Birney, Yoshihide Hayashizaki 
05 Dec 2002-Nature
TL;DR: The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Abstract: Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences These are clustered into 33,409 'transcriptional units', contributing 901% of a newly established mouse transcriptome database Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome 41% of all transcriptional units showed evidence of alternative splicing In protein-coding transcripts, 79% of splice variations altered the protein product Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics

1,663 citations

Journal ArticleDOI
TL;DR: The purpose of the current assessment is to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.
Abstract: The prediction of regulatory elements is a problem where computational methods offer great hope. Over the past few years, numerous tools have become available for this task. The purpose of the current assessment is twofold: to provide some guidance to users regarding the accuracy of currently available tools in various settings, and to provide a benchmark of data sets for assessing future tools.

1,324 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: It is established that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals and will provide a reliable, cost–effective and accessible solution to the current problem of species identification.
Abstract: Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.

9,879 citations

Journal ArticleDOI
TL;DR: A computerized method is presented that reduces to a certain extent the necessity of manually editing multiple alignments, makes the automation of phylogenetic analysis of large data sets feasible, and facilitates the reproduction of the final alignment by other researchers.
Abstract: The use of some multiple-sequence alignments in phylogenetic analysis, particularly those that are not very well conserved, requires the elimination of poorly aligned positions and divergent regions, since they may not be homologous or may have been saturated by multiple substitutions. A computerized method that eliminates such positions and at the same time tries to minimize the loss of informative sites is presented here. The method is based on the selection of blocks of positions that fulfill a simple set of requirements with respect to the number of contiguous conserved positions, lack of gaps, and high conservation of flanking positions, making the final alignment more suitable for phylogenetic analysis. To illustrate the efficiency of this method, alignments of 10 mitochondrial proteins from several completely sequenced mitochondrial genomes belonging to diverse eukaryotes were used as examples. The percentages of removed positions were higher in the most divergent alignments. After removing divergent segments, the amino acid composition of the different sequences was more uniform, and pairwise distances became much smaller. Phylogenetic trees show that topologies can be different after removing conserved blocks, particularly when there are several poorly resolved nodes. Strong support was found for the grouping of animals and fungi but not for the position of more basal eukaryotes. The use of a computerized method such as the one presented here reduces to a certain extent the necessity of manually editing multiple alignments, makes the automation of phylogenetic analysis of large data sets feasible, and facilitates the reproduction of the final alignment by other researchers.

8,757 citations