scispace - formally typeset
Search or ask a question
Author

Greb Huber

Bio: Greb Huber is an academic researcher. The author has contributed to research in topics: Drop (liquid) & Coffee ring effect. The author has an hindex of 1, co-authored 1 publications receiving 4980 citations.

Papers
More filters
Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: In this article, the authors ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior.
Abstract: When a spilled drop of coffee dries on a solid surface, it leaves a dense, ring-like deposit along the perimeter (Fig 1a) The coffee—initially dispersed over the entire drop—becomes concentrated into a tiny fraction of it Such ring deposits are common wherever drops containing dispersed solids evaporate on a surface, and they influence processes such as printing, washing and coating1,2,3,4,5 Ring deposits also provide a potential means to write or deposit a fine pattern onto a surface Here we ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior The resulting outward flow can carry virtually all the dispersed material to the edge This mechanism predicts a distinctive power-law growth of the ring mass with time—a law independent of the particular substrate, carrier fluid or deposited solids We have verified this law by microscopic observations of colloidal fluids

5,553 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: Key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true.
Abstract: In the 19th century, Oscar Wilde stated “We live, I regret to say, in an age of surfaces”. Today, we do so even more, and we do not regret it: key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true. Two routes to self-cleaning are emerging, which work by the removal of dirt by either film or droplet flow. Although a detailed understanding of the mechanisms underlying the behaviour of liquids on such surfaces is still a basic research topic, the first commercial products in the household-commodity sector and for applications in biotechnology are coming within reach of the marketplace. This progress report describes the current status of understanding of the underlying mechanisms, the concepts for making such surfaces, and some of their first applications.

2,114 citations

Journal ArticleDOI
22 Jun 2010-ACS Nano
TL;DR: The present review critically investigates to what extent self-assembly can be directed, enhanced, or controlled by either changing the energy or entropy landscapes, using templates or applying external fields.
Abstract: Within the field of nanotechnology, nanoparticles are one of the most prominent and promising candidates for technological applications. Self-assembly of nanoparticles has been identified as an important process where the building blocks spontaneously organize into ordered structures by thermodynamic and other constraints. However, in order to successfully exploit nanoparticle self-assembly in technological applications and to ensure efficient scale-up, a high level of direction and control is required. The present review critically investigates to what extent self-assembly can be directed, enhanced, or controlled by either changing the energy or entropy landscapes, using templates or applying external fields.

1,938 citations

Journal ArticleDOI
TL;DR: This work focuses on Organic Electronics Materials, which consist of Organic Transistors, Polymer Semiconductors, and Poly(3,2-b)thiophenes, and investigates the role of bias stress in these materials.
Abstract: 2.3. Medical Devices and Sensors 9 2.4. Radio Frequency Applications 10 3. Materials 12 3.1. Organic Electronics Materials 12 3.2. Semiconducting Polymer Design 13 3.3. Poly(3-alkylthiophenes) 14 3.4. Poly(thieno(3,2-b)thiophenes 15 3.5. Benchmark Polymer Semiconductors 15 3.6. High Performance Polymer Semiconductors 15 4. Device Stability 16 4.1. Bias Stress in Organic Transistors 17 4.1.1. Bias Stress Characterization 17 4.1.2. Bias Stress Mechanism 18 4.2. Short Channel Effects in Organic Transistors 19 5. Materials Patterning and Integration 20 6. Conclusions 22 7. Acknowledgments 22 8. References 22

1,602 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable.
Abstract: Inkjet printing is viewed as a versatile manufacturing tool for applications in materials fabrication in addition to its traditional role in graphics output and marking. The unifying feature in all these applications is the dispensing and precise positioning of very small volumes of fluid (1–100 picoliters) on a substrate before transformation to a solid. The application of inkjet printing to the fabrication of structures for structural or functional materials applications requires an understanding as to how the physical processes that operate during inkjet printing interact with the properties of the fluid precursors used. Here we review the current state of understanding of the mechanisms of drop formation and how this defines the fluid properties that are required for a given liquid to be printable. The interactions between individual drops and the substrate as well as between adjacent drops are important in defining the resolution and accuracy of printed objects. Pattern resolution is limited by the extent to which a liquid drop spreads on a substrate and how spreading changes with the overlap of adjacent drops to form continuous features. There are clearly defined upper and lower bounds to the width of a printed continuous line, which can be defined in terms of materials and process variables. Finer-resolution features can be achieved through appropriate patterning and structuring of the substrate prior to printing, which is essential if polymeric semiconducting devices are to be fabricated. Low advancing and receding contact angles promote printed line stability but are also more prone to solute segregation or “coffee staining” on drying.

1,525 citations