scispace - formally typeset
Search or ask a question
Author

Greg Elgar

Bio: Greg Elgar is an academic researcher from Francis Crick Institute. The author has contributed to research in topics: Fugu & Gene. The author has an hindex of 42, co-authored 112 publications receiving 10168 citations. Previous affiliations of Greg Elgar include University of Cambridge & National University of Singapore.
Topics: Fugu, Gene, Genome, Comparative genomics, Human genome


Papers
More filters
Journal ArticleDOI
23 Aug 2002-Science
TL;DR: The Fugu rubripes genome has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds as discussed by the authors.
Abstract: The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some “giant” genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match toFugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.

1,446 citations

Journal ArticleDOI
Christopher Abbosh1, Nicolai Juul Birkbak2, Nicolai Juul Birkbak1, Gareth A. Wilson2, Gareth A. Wilson1, Mariam Jamal-Hanjani1, Tudor Constantin3, Raheleh Salari3, John Le Quesne4, David A. Moore4, Selvaraju Veeriah1, Rachel Rosenthal1, Teresa Marafioti1, Eser Kirkizlar3, Thomas B.K. Watkins1, Thomas B.K. Watkins2, Nicholas McGranahan2, Nicholas McGranahan1, Sophia Ward1, Sophia Ward2, Luke Martinson4, Joan Riley4, Francesco Fraioli1, Maise Al Bakir2, Eva Grönroos2, Francisco Zambrana1, Raymondo Endozo1, Wenya Linda Bi5, Wenya Linda Bi6, Fiona M. Fennessy5, Fiona M. Fennessy6, Nicole Sponer3, Diana Johnson1, Joanne Laycock1, Seema Shafi1, Justyna Czyzewska-Khan1, Andrew Rowan2, Tim Chambers2, Nik Matthews2, Nik Matthews7, Samra Turajlic8, Samra Turajlic2, Crispin T. Hiley2, Crispin T. Hiley1, Siow Ming Lee1, Martin Forster1, Tanya Ahmad1, Mary Falzon1, Elaine Borg1, David Lawrence1, Martin Hayward1, Shyam Kolvekar1, Nikolaos Panagiotopoulos1, Sam M. Janes1, Ricky Thakrar1, Asia Ahmed1, Fiona H Blackhall9, Yvonne Summers, Dina Hafez3, Ashwini Naik3, Apratim Ganguly3, Stephanie Kareht3, Rajesh Shah, Leena Dennis Joseph, Anne Marie Quinn, Phil Crosbie, Babu Naidu10, Gary Middleton10, Gerald Langman, Simon Trotter, Marianne Nicolson11, Hardy Remmen11, Keith M. Kerr11, Mahendran Chetty11, Lesley Gomersall11, Dean A. Fennell4, Apostolos Nakas12, Sridhar Rathinam12, Girija Anand13, Sajid Khan14, Peter Russell15, Veni Ezhil16, Babikir Ismail17, Melanie Irvin-Sellers17, Vineet Prakash17, Jason F. Lester18, Malgorzata Kornaszewska19, Richard Attanoos19, Haydn Adams18, Helen E. Davies18, Dahmane Oukrif1, Ayse U. Akarca1, John A. Hartley1, Helen Lowe1, Sara Lock20, Natasha Iles1, Harriet Bell1, Yenting Ngai1, Greg Elgar2, Zoltan Szallasi21, Zoltan Szallasi22, Zoltan Szallasi23, Roland F. Schwarz24, Javier Herrero1, Aengus Stewart2, Sergio A. Quezada1, Karl S. Peggs1, Peter Van Loo2, Peter Van Loo25, Caroline Dive1, Caroline Dive9, C. Jimmy Lin3, Matthew Rabinowitz3, Hugo J.W.L. Aerts6, Hugo J.W.L. Aerts5, Allan Hackshaw1, Jacqui Shaw4, Bernhard Zimmermann3, Charles Swanton1, Charles Swanton2 
25 May 2017-Nature
TL;DR: It is shown that phylogenetic ct DNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.
Abstract: The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.

1,179 citations

Journal ArticleDOI
TL;DR: It is shown that the chromosome 7q36 associated preaxial polydactyly, a frequently observed congenital limb malformation, results from point mutations in a Shh regulatory element, a regulator that lies within intron 5 of the Lmbr1 gene 1 Mb from the target gene Shh.
Abstract: Unequivocal identification of the full composition of a gene is made difficult by the cryptic nature of regulatory elements. Regulatory elements are notoriously difficult to locate and may reside at considerable distances from the transcription units on which they operate and, moreover, may be incorporated into the structure of neighbouring genes. The importance of regulatory mutations as the basis of human abnormalities remains obscure. Here, we show that the chromosome 7q36 associated preaxial polydactyly, a frequently observed congenital limb malformation, results from point mutations in a Shh regulatory element. Shh, normally expressed in the ZPA posteriorly in the limb bud, is expressed in an additional ectopic site at the anterior margin in mouse models of PPD. Our investigations into the basis of the ectopic Shh expression identified the enhancer element that drives normal Shh expression in the ZPA. The regulator, designated ZRS, lies within intron 5 of the Lmbr1 gene 1 Mb from the target gene Shh. The ZRS drives the early spatio-temporal expression pattern in the limb of tetrapods. Despite the morphological differences between limbs and fins, an equivalent regulatory element is found in fish. The ZRS contains point mutations that segregate with polydactyly in four unrelated families with PPD and in the Hx mouse mutant. Thus point mutations residing in long-range regulatory elements are capable of causing congenital abnormalities, and possess the capacity to modify gene activity such that a novel gamut of abnormalities is detected.

1,129 citations

Journal ArticleDOI
TL;DR: A whole-genome comparison between humans and the pufferfish, Fugu rubripes, is used to identify nearly 1,400 highly conserved non-coding sequences, which are likely to form part of the genomic circuitry that uniquely defines vertebrate development.
Abstract: In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH), in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development, including many transcription factors. These highly conserved non-coding sequences are likely to form part of the genomic circuitry that uniquely defines vertebrate development.

952 citations

Journal ArticleDOI
30 Nov 2017-Cell
TL;DR: It is found that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity.

850 citations


Cited by
More filters
Journal ArticleDOI
21 Apr 2006-Cell
TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.

5,131 citations

Journal ArticleDOI
14 Jun 2007-Nature
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Abstract: We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

5,091 citations

Journal ArticleDOI
Ed S. Lein1, Michael Hawrylycz1, Nancy Ao2, Mikael Ayres1, Amy Bensinger1, Amy Bernard1, Andrew F. Boe1, Mark S. Boguski3, Mark S. Boguski1, Kevin S. Brockway1, Emi J. Byrnes1, Lin Chen1, Li Chen2, Tsuey-Ming Chen2, Mei Chi Chin1, Jimmy Chong1, Brian E. Crook1, Aneta Czaplinska2, Chinh Dang1, Suvro Datta1, Nick Dee1, Aimee L. Desaki1, Tsega Desta1, Ellen Diep1, Tim A. Dolbeare1, Matthew J. Donelan1, Hong-Wei Dong1, Jennifer G. Dougherty1, Ben J. Duncan1, Amanda Ebbert1, Gregor Eichele4, Lili K. Estin1, Casey Faber1, Benjamin A.C. Facer1, Rick Fields2, Shanna R. Fischer1, Tim P. Fliss1, Cliff Frensley1, Sabrina N. Gates1, Katie J. Glattfelder1, Kevin R. Halverson1, Matthew R. Hart1, John G. Hohmann1, Maureen P. Howell1, Darren P. Jeung1, Rebecca A. Johnson1, Patrick T. Karr1, Reena Kawal1, Jolene Kidney1, Rachel H. Knapik1, Chihchau L. Kuan1, James H. Lake1, Annabel R. Laramee1, Kirk D. Larsen1, Christopher Lau1, Tracy Lemon1, Agnes J. Liang2, Ying Liu2, Lon T. Luong1, Jesse Michaels1, Judith J. Morgan1, Rebecca J. Morgan1, Marty Mortrud1, Nerick Mosqueda1, Lydia Ng1, Randy Ng1, Geralyn J. Orta1, Caroline C. Overly1, Tu H. Pak1, Sheana Parry1, Sayan Dev Pathak1, Owen C. Pearson1, Ralph B. Puchalski1, Zackery L. Riley1, Hannah R. Rockett1, Stephen A. Rowland1, Joshua J. Royall1, Marcos J. Ruiz2, Nadia R. Sarno1, Katherine Schaffnit1, Nadiya V. Shapovalova1, Taz Sivisay1, Clifford R. Slaughterbeck1, Simon Smith1, Kimberly A. Smith1, Bryan I. Smith1, Andy J. Sodt1, Nick N. Stewart1, Kenda-Ruth Stumpf1, Susan M. Sunkin1, Madhavi Sutram1, Angelene Tam2, Carey D. Teemer1, Christina Thaller2, Carol L. Thompson1, Lee R. Varnam1, Axel Visel5, Axel Visel4, Ray M. Whitlock1, Paul Wohnoutka1, Crissa K. Wolkey1, Victoria Y. Wong1, Matthew J.A. Wood2, Murat B. Yaylaoglu2, Rob Young1, Brian L. Youngstrom1, Xu Feng Yuan1, Bin Zhang2, Theresa A. Zwingman1, Allan R. Jones1 
11 Jan 2007-Nature
TL;DR: An anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain is described, providing an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Abstract: Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.

4,944 citations

Journal ArticleDOI
TL;DR: A major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes is described and is expected to be a useful platform for functional annotation of newlysequenced genomes, including those of complex eukARYotes, and genome-wide evolutionary studies.
Abstract: The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after euk aryotic o rthologous g roups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The euk aryotic o rthologous g roups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes. The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.

4,167 citations