scispace - formally typeset
Search or ask a question
Author

Greg Kopp

Bio: Greg Kopp is an academic researcher from University of Colorado Boulder. The author has contributed to research in topics: Solar irradiance & Irradiance. The author has an hindex of 30, co-authored 97 publications receiving 3969 citations. Previous affiliations of Greg Kopp include National Center for Atmospheric Research & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: The most accurate value of total solar irradiance during the 2008 solar minimum period is 1360.8 ± 0.5 W m−2 according to measurements from the Total Irradiance Monitor (TIM) on NASA's Solar Radiation and Climate Experiment (SORCE) and a series of new radiometric laboratory tests as discussed by the authors.
Abstract: [1] The most accurate value of total solar irradiance during the 2008 solar minimum period is 1360.8 ± 0.5 W m−2 according to measurements from the Total Irradiance Monitor (TIM) on NASA's Solar Radiation and Climate Experiment (SORCE) and a series of new radiometric laboratory tests. This value is significantly lower than the canonical value of 1365.4 ± 1.3 W m−2 established in the 1990s, which energy balance calculations and climate models currently use. Scattered light is a primary cause of the higher irradiance values measured by the earlier generation of solar radiometers in which the precision aperture defining the measured solar beam is located behind a larger, view-limiting aperture. In the TIM, the opposite order of these apertures precludes this spurious signal by limiting the light entering the instrument. We assess the accuracy and stability of irradiance measurements made since 1978 and the implications of instrument uncertainties and instabilities for climate research in comparison with the new TIM data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variations it detects with stability comparable or superior to prior measurements; instead, its significance is in advancing the capability of monitoring solar irradiance variations on climate-relevant time scales and in improving estimates of Earth energy balance, which the Sun initiates.

843 citations

Book ChapterDOI
TL;DR: For example, the Solar Radiation and Climate Experiment (SORCE) as mentioned in this paper monitors both total and spectral irradiance with significantly reduced uncertainty and increased re- peatability, especially on long time scales.
Abstract: An array of empirical evidence in the space era, and in the past, suggests that climate responds to solar activity. The response mechanisms are thought to be some combination of direct surface heating, indirect processes involving UV radiation and the stratosphere, and modulation of internal climate system oscillations. A quantitative physical description is, as yet, lacking to explain the empirical evidence in terms of the known magnitude of solar radiative output changes and of cli- mate sensitivity to these changes. Reproducing solar-induced decadal climate change requires faster and larger responses than general circulation models allow. Nor is the indirect climatic impact of solar-induced stratospheric change adequately understood, in part because of uncertainties in the vertical coupling of the stratosphere and troposphere. Accounting for solar effects on pre-industrial surface temperatures requires larger irradiance variations than present in the contemporary database, bu te vidence for significant secular irradiance change is ambiguous. Essential for future progress are reliable, extended observations of the solar radiative output changes that produce climate forcing. Twenty-five years after the beginning of continuous monitoring of the Sun's total radiative output, the Solar Radiation and Climate Experiment (SORCE) commences a new generation of solar irradiance measurements with much expanded capabilities. Relative to historical solar observations SORCE monitors both total and spectral irradiance with significantly reduced uncertainty and increased re- peatability, especially on long time scales. Spectral coverage expands beyond UV wavelengths to encompass the visible and near-IR regions that dominate the Sun's radiative output. The space-based irradiance record, augmented now with the spectrum of the changes, facilitates improved characteri- zation of magnetic sources of irradiance variability, and the detection of additional mechanisms. This understanding provides a scientific basis for estimating past and future irradiance variations, needed for detecting and predicting climate change.

304 citations

Journal ArticleDOI
TL;DR: The NASA Glory mission as discussed by the authors is intended to facilitate and improve upon long-term monitoring of two key forcings influencing global climate by flying two state-of-the-art science instruments on an Earth-orbiting platform.
Abstract: The NASA Glory mission is intended to facilitate and improve upon long-term monitoring of two key forcings influencing global climate. One of the mission's principal objectives is to determine the global distribution of detailed aerosol and cloud properties with unprecedented accuracy, thereby facilitating the quantification of the aerosol direct and indirect radiative forcings. The other is to continue the 28-yr record of satellite-based measurements of total solar irradiance from which the effect of solar variability on the Earth's climate is quantified. These objectives will be met by flying two state-of-the-art science instruments on an Earth-orbiting platform. Based on a proven technique demonstrated with an aircraft-based prototype, the Aerosol Polarimetry Sensor (APS) will collect accurate multiangle photopolarimetric measurements of the Earth along the satellite ground track within a wide spectral range extending from the visible to the shortwave infrared. The Total Irradiance Monitor (TIM) is an ...

291 citations

Journal ArticleDOI
TL;DR: The IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards as discussed by the authors.
Abstract: In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

258 citations

Journal ArticleDOI
TL;DR: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission as discussed by the authors provides a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change.
Abstract: The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Systeme Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5–50 μm), the spectrum of solar radiation reflected by the Earth and its atmosphere (320–2300 nm), and radio occultation refractivity from which...

244 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
TL;DR: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community as mentioned in this paper, which describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version.
Abstract: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...

2,835 citations