scispace - formally typeset
Search or ask a question
Author

Greg M. Peters

Other affiliations: University of New South Wales
Bio: Greg M. Peters is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Life-cycle assessment & Environmental impact assessment. The author has an hindex of 11, co-authored 25 publications receiving 541 citations. Previous affiliations of Greg M. Peters include University of New South Wales.

Papers
More filters
Journal ArticleDOI
07 Apr 2020
TL;DR: In this article, the authors identify the environmental impacts at critical points in the textile and fashion value chain, from production to consumption, focusing on water use, chemical pollution, CO2 emissions and textile waste.
Abstract: The fashion industry is facing increasing global scrutiny of its environmentally polluting supply chain operations. Despite the widely publicized environmental impacts, however, the industry continues to grow, in part due to the rise of fast fashion, which relies on cheap manufacturing, frequent consumption and short-lived garment use. In this Review, we identify the environmental impacts at critical points in the textile and fashion value chain, from production to consumption, focusing on water use, chemical pollution, CO2 emissions and textile waste. Impacts from the fashion industry include over 92 million tonnes of waste produced per year and 79 trillion litres of water consumed. On the basis of these environmental impacts, we outline the need for fundamental changes in the fashion business model, including a deceleration of manufacturing and the introduction of sustainable practices throughout the supply chain, as well a shift in consumer behaviour — namely, decreasing clothing purchases and increasing garment lifetimes. These changes stress the need for an urgent transition back to ‘slow’ fashion, minimizing and mitigating the detrimental environmental impacts, so as to improve the long-term sustainability of the fashion supply chain. The increase in clothing consumption, exemplified in fast fashion, has severe environmental consequences. This Review discusses the impacts of fashion on natural resources and the environment, and examines how technology, policy and consumer behaviour can mitigate the negative effects of the fashion industry.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the authors link databases on household consumption, industrial production, economic turnover, employment, water use, and greenhouse gas emissions into a spatially explicit model, and show that annually a typical household is responsible for producing approximately 80 tonnes of greenhouse emissions, uses around 3 million liters of water, causes about A$140,000 to circulate in the wider economy, and provides labor worth just under three full-time employment-years.
Abstract: Summary This article links databases on household consumption, industrial production, economic turnover, employment, water use, and greenhouse gas emissions into a spatially explicit model. The causal sequence starts with households demanding a certain consumer basket. This demand requires production in a complex supply-chain network of interdependent industry sectors. Even though the household may be confined to a particular geographical location, say a dwelling in a city, the industries producing the indirect inputs for the commodities that the household demands will be dispersed all over Australia and probably beyond. Industrial production represents local points of economic activity, employment, water use, and emissions that have local economic, social, and environmental impacts. The consumer basket of a typical household is followed in Australia's two largest cities—Sydney and Melbourne—along its upstream supply chains and to numerous production sites within Australia. The spatial spread is described by means of a detailed regional interindustry model. Through industry-specific emissions profiles, industrial production is then translated into local impacts. We show that annually a typical household is responsible for producing approximately 80 tonnes of greenhouse gas emissions, uses around 3 million liters of water, causes about A$140,000 to circulate in the wider economy, and provides labor worth just under three full-time employment-years. We also introduce maps that visually demonstrate how a very localized household affects the environment across an entire continent. Our model is unprecedented in its spatial and sectoral detail, at least for Australia.

169 citations

Journal ArticleDOI
TL;DR: In this article, the water used by three red meat supply systems in southern Australia was estimated using hybrid life cycle assessment (LCA) and life cycle inventory (LCI) practice.
Abstract: Life cycle assessment (LCA) and life cycle inventory (LCI) practice needs to engage with the debate on water use in agriculture and industry. In the case of the red meat sector, some of the methodologies proposed or in use cannot easily inform the debate because either the results are not denominated in units that are meaningful to the public or the results do not reflect environmental outcomes. This study aims to solve these problems by classifying water use LCI data in the Australian red meat sector in a manner consistent with contemporary definitions of sustainability. We intend to quantify water that is removed from the course it would take in the absence of production or degraded in quality by the production system. The water used by three red meat supply systems in southern Australia was estimated using hybrid LCA. Detailed process data incorporating actual growth rates and productivity achieved in two calendar years were complemented by an input–output analysis of goods and services purchased by the properties. Detailed hydrological modelling using a standard agricultural software package was carried out using actual weather data. The model results demonstrated that the major hydrological flows in the system are rainfall and evapotranspiration. Transferred water flows and funds represent small components of the total water inputs to the agricultural enterprise, and the proportion of water degraded is also small relative to the water returned pure to the atmosphere. The results of this study indicate that water used to produce red meat in southern Australia is 18–540 L/kg HSCW, depending on the system, reference year and whether we focus on source or discharge characteristics. Two key factors cause the considerable differences between the water use data presented by different authors: the treatment of rain and the feed production process. Including rain and evapotranspiration in LCI data used in simple environmental discussions is the main cause of disagreement between authors and is questionable from an environmental impact perspective because in the case of some native pastoral systems, these flows may not have changed substantially since the arrival of Europeans. Regarding the second factor, most of the grain and fodder crops used in the three red meat supply chains we studied in Australia are produced by dryland cropping. In other locations where surface water supplies are more readily available, such as the USA, irrigation of cattle fodder is more common. So whereas the treatment of rain is a methodological issue relevant to all studies relating water use to the production of red meat, the availability of irrigation water can be characterised as a fundamental difference between the infrastructure of red meat production systems in different locations. Our results are consistent with other published work when the methodological diversity of their work and the approaches we have used are taken into account. We show that for media claims that tens or hundreds of thousands of litres of water are used in the production of red meat to be true, analysts have to ignore the environmental consequences of water use. Such results may nevertheless be interesting if the purpose of their calculations is to focus on calorific or financial gain rather than environmental optimisation. Our approach can be applied to other agricultural systems. We would not suggest that our results can be used as industry averages. In particular, we have not examined primary data for northern Australian beef production systems, where the majority of Australia’s export beef is produced.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the applicability of life-cycle assessment (LCA) for the textile industry is discussed with a special focus on environmental impact from chemicals, and two research questions were investigated in a case study of hospital garments: 1) whether LCA adds value to assessments of the chemical performance of textile products and 2) whether inclusion of toxicity issues in LCA affects environmental performance rankings for textile products.
Abstract: The applicability of life-cycle assessment (LCA) for the textile industry is discussed with a special focus on environmental impact from chemicals. Together with issues of water depletion and energy use, the use of chemicals and their emissions are important environmental considerations for textile products. However, accounting for chemicals is a weak point in LCA methodology and practice. Two research questions were investigated in a case study of hospital garments: 1) whether LCA adds value to assessments of the chemical performance of textile products, and 2) whether inclusion of toxicity issues in LCA affects environmental performance rankings for textile products. It is concluded that the quantitative and holistic tool LCA is useful for environmental decision makers in the textile industry, and becomes more effective when chemical impacts are included. A flexible way forward is demonstrated to meet the challenge of accounting for chemicals in LCAs of textile products.

39 citations

Journal ArticleDOI
TL;DR: In this paper, a preliminary life cycle assessment with performance indicators for the use of energy and water and the emission of greenhouse gases was carried out for air-to-water generators (AWGs).
Abstract: Devices that condense and disinfect water vapour to provide chilled drinking water in office environments, so-called 'air water generators' (AWGs), are being marketed as environmentally friendly alternatives to the traditional bottled water cooler. We sought to examine this claim. The approach adopted was a preliminary life cycle assessment with performance indicators for the use of energy and water and the emission of greenhouse gases. We compared an AWG with its main market competitor, the traditional bottled water cooler and a simple refrigerator containing a jug of water. Modelling was based on Australian conditions and energy supply. To manage possible scope uncertainty, we borrowed the idea of 'triangulation' as defined in the social sciences. We found that without a renewable energy supply, the claim of environmental superiority is not supported by quantitative analysis. For each indicator, the AWG's score was typically two to four times higher than the alternatives. Energy consumption was the key issue driving all three indicators. Considering the principal environmental issues related to these systems, air-to-water machines significantly underperform bottled water coolers. A simple refrigerator has the capacity to perform multiple functions and therefore outperform both the bottled and atmospheric water options once allocation of burdens is considered. These conclusions are supported by all three perspectives examined to manage uncertainty.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: S spatially explicit probabilistic forecasts of global urban land-cover change are developed and the direct impacts on biodiversity hotspots and tropical carbon biomass are explored to minimize global biodiversity and vegetation carbon losses.
Abstract: Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.

2,681 citations

01 Dec 2012
TL;DR: In this paper, the authors develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass, showing that urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage.
Abstract: Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr−1), equal to ∼5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses.

1,939 citations

Journal ArticleDOI
TL;DR: The authors provide an overview of how generalised multi-regional input-output models can be used for carbon footprint applications, focusing on the relevance and suitability of such evidence to inform decision making.
Abstract: This article provides an overview of how generalised multi-regional input–output models can be used for carbon footprint applications. We focus on the relevance and suitability of such evidence to inform decision making. Such an overview is currently missing. Drawing on UK results, we cover carbon footprint applications in seven areas: national emissions inventories and trade, emission drivers, economic sectors, supply chains, organisations, household consumption and lifestyles as well as sub-national emission inventories. The article highlights the multiple uses of generalised multi-regional input–output models for carbon footprinting and concludes by highlighting important avenues for future research.

474 citations

Journal ArticleDOI
TL;DR: In this article, a review of the literature on textile reuse and recycling is presented, where the authors provide a summary of the current knowledge and point out several areas for further research.

467 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a hybrid method for estimating the carbon footprint of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles.
Abstract: A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.

351 citations