scispace - formally typeset
Search or ask a question
Author

Greg S. Corrado

Other affiliations: IBM, Howard Hughes Medical Institute, Stanford University  ...read more
Bio: Greg S. Corrado is an academic researcher from Google. The author has contributed to research in topics: Medicine & Deep learning. The author has an hindex of 54, co-authored 125 publications receiving 95930 citations. Previous affiliations of Greg S. Corrado include IBM & Howard Hughes Medical Institute.


Papers
More filters
Posted Content
TL;DR: An AI system to classify CXRs as normal or abnormal and the results suggest that the AI system trained using a large dataset containing a diverse array of CXR abnormalities generalizes to new patient populations and unseen diseases.
Abstract: Chest radiography (CXR) is the most widely-used thoracic clinical imaging modality and is crucial for guiding the management of cardiothoracic conditions. The detection of specific CXR findings has been the main focus of several artificial intelligence (AI) systems. However, the wide range of possible CXR abnormalities makes it impractical to build specific systems to detect every possible condition. In this work, we developed and evaluated an AI system to classify CXRs as normal or abnormal. For development, we used a de-identified dataset of 248,445 patients from a multi-city hospital network in India. To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States. Of these datasets, 4 focused on diseases that the AI was not trained to detect: 2 datasets with tuberculosis and 2 datasets with coronavirus disease 2019. Our results suggest that the AI system generalizes to new patient populations and abnormalities. In a simulated workflow where the AI system prioritized abnormal cases, the turnaround time for abnormal cases reduced by 7-28%. These results represent an important step towards evaluating whether AI can be safely used to flag cases in a general setting where previously unseen abnormalities exist.

15 citations

01 Jan 2010
TL;DR: A new approach to learning sparse, spatiotemporal features in which the number of basis vectors, their orientations, velocities and the size of their receptive fields change over the duration of unsupervised training is presented.
Abstract: We present a new approach to learning sparse, spatiotemporal features and demonstrate the utility of the approach by applying the resulting sparse codes to the problem of activity recognition. Learning features that discriminate among human activities in video is difficult in part because the stable space-time events that reliably characterize the relevant motions are rare. To overcome this problem, we adopt a multi-stage approach to activity recognition. In the initial preprocessing stage, we first whiten and apply local contrast normalization to each frame of the video. We then apply an additional set of filters to identify and extract salient space-time volumes that exhibit smooth periodic motion. We collect a large corpus of these space-time volumes as training data for the unsupervised learning of a sparse, over-complete basis using a variant of the two-phase analysis-synthesis algorithm of Olshausen and Field [1997]. We treat the synthesis phase, which consists of reconstructing the input as a sparse — mostly zero coefficient – linear combination of basis vectors, as an L1-regularized least-squares problem. We found most existing algorithms for solving the L1-regularized least-squares problem to be slow and perform poorly at the task of learning codes that are spatially oriented and temporally diverse in terms of transformations and velocities. To reduce the time required in learning — and most importantly the time required for reconstruction in subsequent production use — we adapted existing algorithms to exploit potential parallelism through the use of readily-available SIMD hardware. To obtain better codes, we developed a new approach to learning sparse, spatiotemporal codes in which the number of basis vectors, their orientations, velocities and the size of their receptive fields change over the duration of unsupervised training. The algorithm starts with a relatively small, initial basis with minimal temporal extent. This initial basis is obtained through conventional sparse coding techniques and is expanded over time by recursively constructing a new basis consisting of basis vectors with larger temporal extent that proportionally conserve regions of previously trained weights. These proportionally conserved weights are combined with the result of adjusting newly added weights to represent a greater range of primitive motion features. The size of the current basis is determined probabilistically by sampling from existing basis vectors according to their activation on the training set. The resulting algorithm produces bases consisting of filters that are bandpass, spatially oriented and temporally diverse in terms of their transformations and velocities. We demonstrate the utility of our approach by using it to recognize human activity in video.

15 citations

Journal ArticleDOI
TL;DR: In this paper , a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach was proposed to bridge the gap between physicians' and large language models' answers.
Abstract: Recent artificial intelligence (AI) systems have reached milestones in"grand challenges"ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a"passing"score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p<0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p<0.001) on newly introduced datasets of 240 long-form"adversarial"questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

15 citations


Cited by
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations