scispace - formally typeset
Search or ask a question
Author

Greg S. Corrado

Other affiliations: IBM, Howard Hughes Medical Institute, Stanford University  ...read more
Bio: Greg S. Corrado is an academic researcher from Google. The author has contributed to research in topics: Medicine & Deep learning. The author has an hindex of 54, co-authored 125 publications receiving 95930 citations. Previous affiliations of Greg S. Corrado include IBM & Howard Hughes Medical Institute.


Papers
More filters
Posted Content
TL;DR: This work proposes a framework to convert predictions from explanation techniques to a mechanism of discovery, and shows how generative models in combination with black-box predictors can be used to generate hypotheses that can be critically examined.
Abstract: Model explanation techniques play a critical role in understanding the source of a model's performance and making its decisions transparent. Here we investigate if explanation techniques can also be used as a mechanism for scientific discovery. We make three contributions: first, we propose a framework to convert predictions from explanation techniques to a mechanism of discovery. Second, we show how generative models in combination with black-box predictors can be used to generate hypotheses (without human priors) that can be critically examined. Third, with these techniques we study classification models for retinal images predicting Diabetic Macular Edema (DME), where recent work showed that a CNN trained on these images is likely learning novel features in the image. We demonstrate that the proposed framework is able to explain the underlying scientific mechanism, thus bridging the gap between the model's performance and human understanding.

7 citations

Journal ArticleDOI
TL;DR: In this article , an Artificial Intelligence (AI) algorithm was used to recognize surgical phases of laparoscopic cholecystectomy (LC) videos spanning a range of complexities.
Abstract: The potential role and benefits of AI in surgery has yet to be determined. This study is a first step in developing an AI system for minimizing adverse events and improving patient's safety. We developed an Artificial Intelligence (AI) algorithm and evaluated its performance in recognizing surgical phases of laparoscopic cholecystectomy (LC) videos spanning a range of complexities.A set of 371 LC videos with various complexity levels and containing adverse events was collected from five hospitals. Two expert surgeons segmented each video into 10 phases including Calot's triangle dissection and clipping and cutting. For each video, adverse events were also annotated when present (major bleeding; gallbladder perforation; major bile leakage; and incidental finding) and complexity level (on a scale of 1-5) was also recorded. The dataset was then split in an 80:20 ratio (294 and 77 videos), stratified by complexity, hospital, and adverse events to train and test the AI model, respectively. The AI-surgeon agreement was then compared to the agreement between surgeons.The mean accuracy of the AI model for surgical phase recognition was 89% [95% CI 87.1%, 90.6%], comparable to the mean inter-annotator agreement of 90% [95% CI 89.4%, 90.5%]. The model's accuracy was inversely associated with procedure complexity, decreasing from 92% (complexity level 1) to 88% (complexity level 3) to 81% (complexity level 5).The AI model successfully identified surgical phases in both simple and complex LC procedures. Further validation and system training is warranted to evaluate its potential applications such as to increase patient safety during surgery.

6 citations

Proceedings Article
22 Jul 2012
TL;DR: It is argued that while the authors' higher cognitive functions may interact in a complicated fashion, many of the component functions operate through well-defined interfaces and are built on a neural substrate that scales easily under the control of a modular genetic architecture.
Abstract: We consider three hypotheses concerning the primate neocortex which have influenced computational neuroscience in recent years. Is the mind modular in terms of its being profitably described as a collection of relatively independent functional units? Does the regular structure of the cortex imply a single algorithm at work, operating on many different inputs in parallel? Can the cognitive differences between humans and our closest primate relatives be explained in terms of a scalable cortical architecture? We bring to bear diverse sources of evidence to argue that the answers to each of these questions -- with some judicious qualifications -- are in the affirmative. In particular, we argue that while our higher cognitive functions may interact in a complicated fashion, many of the component functions operate through well-defined interfaces and, perhaps more important, are built on a neural substrate that scales easily under the control of a modular genetic architecture. Processing in the primary sensory cortices seem amenable to similar algorithmic principles, and, even for those cases where alternative principles are at play, the regular structure of cortex allows the same or greater advantages as the architecture scales. Similar genetic machinery to that used by nature to scale body plans has apparently been applied to scale cortical computations. The resulting replicated computing units can be used to build larger working memory and support deeper recursions needed to qualitatively improve our abilities to handle language, abstraction and social interaction.

6 citations

Posted Content
21 Dec 2018
TL;DR: A deep learning algorithm trained on fundus images alone can detect referable glaucoma risk with higher sensitivity and comparable specificity to eye care providers.
Abstract: Glaucoma is the leading cause of preventable, irreversible blindness world-wide. The disease can remain asymptomatic until severe, and an estimated 50%-90% of people with glaucoma remain undiagnosed. Thus, glaucoma screening is recommended for early detection and treatment. A cost-effective tool to detect glaucoma could expand healthcare access to a much larger patient population, but such a tool is currently unavailable. We trained a deep learning (DL) algorithm using a retrospective dataset of 58,033 images, assessed for gradability, glaucomatous optic nerve head (ONH) features, and referable glaucoma risk. The resultant algorithm was validated using 2 separate datasets. For referable glaucoma risk, the algorithm had an AUC of 0.940 (95%CI, 0.922-0.955) in validation dataset "A" (1,205 images, 1 image/patient; 19% referable where images were adjudicated by panels of fellowship-trained glaucoma specialists) and 0.858 (95% CI, 0.836-0.878) in validation dataset "B" (17,593 images from 9,643 patients; 9.2% referable where images were from the Atlanta Veterans Affairs Eye Clinic diabetic teleretinal screening program using clinical referral decisions as the reference standard). Additionally, we found that the presence of vertical cup-to-disc ratio >= 0.7, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels contributed most to referable glaucoma risk assessment by both glaucoma specialists and the algorithm. Algorithm AUCs ranged between 0.608-0.977 for glaucomatous ONH features. The DL algorithm was significantly more sensitive than 6 of 10 graders, including 2 of 3 glaucoma specialists, with comparable or higher specificity relative to all graders. A DL algorithm trained on fundus images alone can detect referable glaucoma risk with higher sensitivity and comparable specificity to eye care providers.

6 citations

Posted Content
TL;DR: Methods to lift static attribution techniques to the dynamical setting, where they identify and address challenges specific to dynamics are developed.
Abstract: Much work aims to explain a model's prediction on a static input. We consider explanations in a temporal setting where a stateful dynamical model produces a sequence of risk estimates given an input at each time step. When the estimated risk increases, the goal of the explanation is to attribute the increase to a few relevant inputs from the past. While our formal setup and techniques are general, we carry out an in-depth case study in a clinical setting. The goal here is to alert a clinician when a patient's risk of deterioration rises. The clinician then has to decide whether to intervene and adjust the treatment. Given a potentially long sequence of new events since she last saw the patient, a concise explanation helps her to quickly triage the alert. We develop methods to lift static attribution techniques to the dynamical setting, where we identify and address challenges specific to dynamics. We then experimentally assess the utility of different explanations of clinical alerts through expert evaluation.

5 citations


Cited by
More filters
Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations