scispace - formally typeset
Search or ask a question
Author

Greg Schivley

Other affiliations: Carnegie Mellon University
Bio: Greg Schivley is an academic researcher from Booz Allen Hamilton. The author has contributed to research in topics: Greenhouse gas & Natural gas. The author has an hindex of 10, co-authored 15 publications receiving 413 citations. Previous affiliations of Greg Schivley include Carnegie Mellon University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a systematic review of available midpoint metrics (i.e., using an indicator situated in the middle of the cause-effect chain from emissions to climate change) for well-mixed greenhouse gases and near-term climate forcers based on the current literature is performed.

108 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue for an active consideration of these aspects to bridge the gap between climate impact methods used in environmental impact analysis and climate science, and argue that failure to acknowledge the complexity of climate change drivers and the spatial and temporal heterogeneities of their climate system responses can lead to the deployment of suboptimal and potentially even counterproductive, mitigation strategies.

74 citations

Journal ArticleDOI
TL;DR: In this paper, a synthesis of new methane (CH4) emission data from a recent series of ground-based field measurements shows that 1.7% of the methane in natural gas is emitted between extraction and delivery (with a 95% confidence interval from 1.3% to 2.2%).

57 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the life cycle greenhouse gas emissions of coal and natural gas used in new, advanced power plants using a broad set of available climate metrics in order to test for the robustness of results.
Abstract: Summary In the ongoing debate about the climate benefits of fuel switching from coal to natural gas for power generation, the metrics used to model climate impacts may be important. In this article, we evaluate the life cycle greenhouse gas emissions of coal and natural gas used in new, advanced power plants using a broad set of available climate metrics in order to test for the robustness of results. Climate metrics included in the article are global warming potential, global temperature change potential, technology warming potential, and cumulative radiative forcing. We also used the Model for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC) climate-change model to validate the results. We find that all climate metrics suggest a natural gas combined cycle plant offers life cycle climate benefits over 100 years compared to a pulverized coal plant, even if the life cycle methane leakage rate for natural gas reaches 5%. Over shorter time frames (i.e., 20 years), plants using natural gas with a 4% leakage rate have similar climate impacts as those using coal, but are no worse than coal. If carbon capture and sequestration becomes available for both types of power plants, natural gas still offers climate benefits over coal as long as the life cycle methane leakage rate remains below 2%. These results are consistent across climate metrics and the MAGICC model over a 100-year time frame. Although it is not clear whether any of these metrics are better than the others, the choice of metric can inform decisions based on different societal values. For example, whereas annual temperature change reported may be a more relevant metric to evaluate the human health effects of increased heat, the cumulative temperature change may be more relevant to evaluate climate impacts, such as sea-level rise, that will result from the cumulative warming.

54 citations


Cited by
More filters
Journal Article
TL;DR: A case study explores the background of the digitization project, the practices implemented, and the critiques of the project, which aims to provide access to a plethora of information to EPA employees, scientists, and researchers.
Abstract: The Environmental Protection Agency (EPA) provides access to information on a variety of topics related to the environment and strives to inform citizens of health risks. The EPA also has an extensive library network that consists of 26 libraries throughout the United States, which provide access to a plethora of information to EPA employees, scientists, and researchers. The EPA implemented a reorganization project to digitize their materials so they would be more accessible to a wider range of users, but this plan was drastically accelerated when the EPA was threatened with a budget cut. It chose to close and reduce the hours and services of some of their libraries. As a result, the agency was accused of denying users the “right to know” by making information unavailable, not providing an adequate strategic plan, and discarding vital materials. This case study explores the background of the digitization project, the practices implemented, and the critiques of the project.

2,588 citations

01 Jan 2015

976 citations

Journal ArticleDOI
13 Jul 2018-Science
TL;DR: The magnitude of this leakage was reassessed and it was found that in 2015, supply chain emissions were ∼60% higher than the U.S. Environmental Protection Agency inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions.
Abstract: Methane emissions from the U.S. oil and natural gas supply chain were estimated by using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 teragrams per year, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. Environmental Protection Agency inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Substantial emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.

584 citations