scispace - formally typeset
Search or ask a question
Author

Gregor Hodgson

Bio: Gregor Hodgson is an academic researcher. The author has contributed to research in topics: Coral reef & Reef. The author has an hindex of 8, co-authored 11 publications receiving 1495 citations.

Papers
More filters
Journal ArticleDOI
25 Jul 2008-Science
TL;DR: The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle has the highest proportion of species in all categories of elevated extinction risk.
Abstract: The conservation status of 845 zooxanthellate reef-building coral species was assessed by using International Union for Conservation of Nature Red List Criteria. Of the 704 species that could be assigned conservation status, 32.8% are in categories with elevated risk of extinction. Declines in abundance are associated with bleaching and diseases driven by elevated sea surface temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances. The proportion of corals threatened with extinction has increased dramatically in recent decades and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest proportion of species in all categories of elevated extinction risk. Our results emphasize the widespread plight of coral reefs and the urgent need to enact conservation measures.

1,272 citations

Journal ArticleDOI
TL;DR: It is shown that bleaching probability is highest at mid-latitude sites despite equivalent thermal stress at equatorial sites, and that thermally susceptible genotypes may have declined and/or adapted such that the remaining coral populations now have a higher thermal threshold for bleaching.
Abstract: Thermal-stress events associated with climate change cause coral bleaching and mortality that threatens coral reefs globally. Yet coral bleaching patterns vary spatially and temporally. Here we synthesize field observations of coral bleaching at 3351 sites in 81 countries from 1998 to 2017 and use a suite of environmental covariates and temperature metrics to analyze bleaching patterns. Coral bleaching was most common in localities experiencing high intensity and high frequency thermal-stress anomalies. However, coral bleaching was significantly less common in localities with a high variance in sea-surface temperature (SST) anomalies. Geographically, the highest probability of coral bleaching occurred at tropical mid-latitude sites (15-20 degrees north and south of the Equator), despite similar thermal stress levels at equatorial sites. In the last decade, the onset of coral bleaching has occurred at significantly higher SSTs (∼0.5 °C) than in the previous decade, suggesting that thermally susceptible genotypes may have declined and/or adapted such that the remaining coral populations now have a higher thermal threshold for bleaching.

297 citations

Journal ArticleDOI
28 May 2021-Science
TL;DR: This paper showed that local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching, and that the combined effects of increasing heat stress and macro-algae intensified coral loss, and they offered an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene.
Abstract: Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene.

91 citations

Journal ArticleDOI
TL;DR: The Global Coral Reef Monitoring Network has been the foundation for global reporting on coral reefs for two decades, and is entering into a new phase with improved operational and data standards incorporating the Essential Ocean Variables (EOVs) (www.goosocean.org/eov) and Framework for Ocean Observerving developed by the Global Ocean Observing System as discussed by the authors.
Abstract: Coral reefs are exceptionally biodiverse and human dependence on their ecosystem services is high. Reefs experience significant direct and indirect anthropogenic pressures, and provide a sensitive indicator of coastal ocean health, climate change, and ocean acidification, with associated implications for society. Monitoring coral reef status and trends is essential to better inform science, management and policy, but the projected collapse of reef systems within a few decades makes the provision of accurate and actionable monitoring data urgent. The Global Coral Reef Monitoring Network has been the foundation for global reporting on coral reefs for two decades, and is entering into a new phase with improved operational and data standards incorporating the Essential Ocean Variables (EOVs) (www.goosocean.org/eov) and Framework for Ocean Observing developed by the Global Ocean Observing System. Three EOVs provide a robust description of reef health: hard coral cover and composition, macro-algal canopy cover, and fish diversity and abundance. A data quality model based on comprehensive metadata has been designed to facilitate maximum global coverage of coral reef data, and tangible steps to track capacity building. Improved monitoring of events such as mass bleaching and disease outbreaks, citizen science, and socio-economic monitoring have the potential to greatly improve the relevance of monitoring to managers and stakeholders, and to address the complex and multi-dimensional interactions between reefs and people. A new generation of autonomous vehicles (underwater, surface, and aerial) and satellites are set to revolutionize and vastly expand our understanding of coral reefs. Promising approaches include Structure from Motion image processing, and acoustic techniques. Across all systems, curation of data in linked and open online databases, with an open data culture to maximize benefits from data integration, and empowering users to take action, are priorities. Action in the next decade will be essential to mitigate the impacts on coral reefs from warming temperatures, through local management and informing national and international obligations, particularly in the context of the Sustainable Development Goals, climate action, and the role of coral reefs as a global indicator. Mobilizing data to help drive the needed behavior change is a top priority for coral reef observing systems.

90 citations

01 Jan 1997
TL;DR: The Corals and coral reef fishes of kuwait as discussed by the authors, The coral and coral reefs fishes of KUwait, The corals and corals of Kuwait, as discussed by the authors.
Abstract: The Corals and coral reef fishes of kuwait , The Corals and coral reef fishes of kuwait , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

45 citations


Cited by
More filters
Journal ArticleDOI
19 Aug 2011-Science
TL;DR: A meta-analysis shows that species are shifting their distributions in response to climate change at an accelerating rate, and that the range shift of each species depends on multiple internal species traits and external drivers of change.
Abstract: The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 110 meters per decade, and to higher latitudes at a median rate of 169 kilometers per decade These rates are approximately two and three times faster than previously reported The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change Rapid average shifts derive from a wide diversity of responses by individual species

3,986 citations

Journal ArticleDOI
TL;DR: In this paper, the main ecological services across a variety of estuarine and coastal ecosystems (ECEs) including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes are reviewed.
Abstract: The global decline in estuarine and coastal ecosystems (ECEs) is affecting a number of critical benefits, or ecosystem services. We review the main ecological services across a variety of ECEs, including marshes, mangroves, nearshore coral reefs, seagrass beds, and sand beaches and dunes. Where possible, we indicate estimates of the key economic values arising from these services, and discuss how the natural variability of ECEs impacts their benefits, the synergistic relationships of ECEs across seascapes, and management implications. Although reliable valuation estimates are beginning to emerge for the key services of some ECEs, such as coral reefs, salt marshes, and mangroves, many of the important benefits of seagrass beds and sand dunes and beaches have not been assessed properly. Even for coral reefs, marshes, and mangroves, important ecological services have yet to be valued reliably, such as cross-ecosystem nutrient transfer (coral reefs), erosion control (marshes), and pollution control (mangroves). An important issue for valuing certain ECE services, such as coastal protection and habitat-fishery linkages, is that the ecological functions underlying these services vary spatially and temporally. Allowing for the connectivity between ECE habitats also may have important implications for assessing the ecological functions underlying key ecosystems services, such coastal protection, control of erosion, and habitat-fishery linkages. Finally, we conclude by suggesting an action plan for protecting and/or enhancing the immediate and longer-term values of ECE services. Because the connectivity of ECEs across land-sea gradients also influences the provision of certain ecosystem services, management of the entire seascape will be necessary to preserve such synergistic effects. Other key elements of an action plan include further ecological and economic collaborative research on valuing ECE services, improving institutional and legal frameworks for management, controlling and regulating destructive economic activities, and developing ecological restoration options.

3,750 citations

Journal ArticleDOI
30 May 2014-Science
TL;DR: The biodiversity of eukaryote species and their extinction rates, distributions, and protection is reviewed, and what the future rates of species extinction will be, how well protected areas will slow extinction Rates, and how the remaining gaps in knowledge might be filled are reviewed.
Abstract: Background A principal function of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) is to “perform regular and timely assessments of knowledge on biodiversity.” In December 2013, its second plenary session approved a program to begin a global assessment in 2015. The Convention on Biological Diversity (CBD) and five other biodiversity-related conventions have adopted IPBES as their science-policy interface, so these assessments will be important in evaluating progress toward the CBD’s Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. As a contribution toward such assessment, we review the biodiversity of eukaryote species and their extinction rates, distributions, and protection. We document what we know, how it likely differs from what we do not, and how these differences affect biodiversity statistics. Interestingly, several targets explicitly mention “known species”—a strong, if implicit, statement of incomplete knowledge. We start by asking how many species are known and how many remain undescribed. We then consider by how much human actions inflate extinction rates. Much depends on where species are, because different biomes contain different numbers of species of different susceptibilities. Biomes also suffer different levels of damage and have unequal levels of protection. How extinction rates will change depends on how and where threats expand and whether greater protection counters them. Different visualizations of species biodiversity. ( A ) The distributions of 9927 bird species. ( B ) The 4964 species with smaller than the median geographical range size. ( C ) The 1308 species assessed as threatened with a high risk of extinction by BirdLife International for the Red List of Threatened Species of the International Union for Conservation of Nature. ( D ) The 1080 threatened species with less than the median range size. (D) provides a strong geographical focus on where local conservation actions can have the greatest global impact. Additional biodiversity maps are available at www.biodiversitymapping.org. Advances Recent studies have clarified where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. These data are increasingly accessible, bringing greater transparency to science and governance. Taxonomic catalogs of plants, terrestrial vertebrates, freshwater fish, and some marine taxa are sufficient to assess their status and the limitations of our knowledge. Most species are undescribed, however. The species we know best have large geographical ranges and are often common within them. Most known species have small ranges, however, and such species are typically newer discoveries. The numbers of known species with very small ranges are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. We expect unknown species to share these characteristics. Current rates of extinction are about 1000 times the background rate of extinction. These are higher than previously estimated and likely still underestimated. Future rates will depend on many factors and are poised to increase. Finally, although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Outlook Progress on assessing biodiversity will emerge from continued expansion of the many recently created online databases, combining them with new global data sources on changing land and ocean use and with increasingly crowdsourced data on species’ distributions. Examples of practical conservation that follow from using combined data in Colombia and Brazil can be found at www.savingspecies.org and www.youtube.com/watch?v=R3zjeJW2NVk.

2,360 citations

Journal ArticleDOI
TL;DR: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects.
Abstract: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wideranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

2,136 citations

Journal ArticleDOI
21 Jan 2014-eLife
TL;DR: In this article, the authors present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes (sharks, rays, and chimaeras).
Abstract: The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world's ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery.

1,467 citations