scispace - formally typeset
Search or ask a question
Author

Gregor Kramberger

Other affiliations: University of Ljubljana
Bio: Gregor Kramberger is an academic researcher from Jožef Stefan Institute. The author has contributed to research in topics: Detector & Particle detector. The author has an hindex of 22, co-authored 70 publications receiving 1290 citations. Previous affiliations of Gregor Kramberger include University of Ljubljana.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD), which is based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications.
Abstract: This paper introduces a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications. The main differences to standard APD detectors are the low gain requested to detect high energy charged particles, and the possibility to have fine segmentation pitches: this allows fabrication of microstrip or pixel devices which do not suffer from the limitations normally found [1] in avalanche detectors. In addition, a moderate multiplication value will allow the fabrication of thinner devices with the same output signal of standard thick substrates. The investigation of these detectors provides important indications on the ability of such modified electrode geometry to control and optimize the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated silicon detectors, at reasonable bias voltage, compatible with the voltage feed limitation of the CERN High Luminosity Large Hadron Collider (HL-LHC) experiments [2] . For instance, the inner most pixel detector layers of the ATLAS tracker will be exposed to fluences up to 2×10 16 1 MeV n eq /cm 2 , while for the inner strip detector region fluences of 1×10 15 n eq /cm 2 are expected. The gain implemented in the non-irradiated devices must retain some effect also after irradiation, with a higher multiplication factor with respect to standard structures, in order to be used in harsh environments such those expected at collider experiments.

295 citations

Journal ArticleDOI
TL;DR: Low Gain Avalanche Detectors (LGADs) as discussed by the authors are based on a n++-p+-p structure where appropriate doping of multiplication layer (p^+) is needed to achieve high fields and impact ionization.
Abstract: Novel silicon detectors with charge gain were designed (Low Gain Avalanche Detectors - LGAD) to be used in particle physics experiments, medical and timing applications. They are based on a n++-p+-p structure where appropriate doping of multiplication layer (p^+) is needed to achieve high fields and impact ionization. Several wafers were processed with different junction parameters resulting in gains of up to 16 at high voltages. In order to study radiation hardness of LGAD, which is one of key requirements for future high energy experiments, several sets of diodes were irradiated with reactor neutrons, 192 MeV pions and 800 MeV protons to the equivalent fluences of up to Φeq=1016 cm−2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. It was found that the gain decreases with irradiation, which was attributed to effective acceptor removal in the multiplication layer. Other important aspects of operation of irradiated detectors such as leakage current and noise in the presence of charge multiplication were also investigated.

108 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a highly radiation-tolerant n-in-p silicon microstrip sensor for very high radiation environments such as in the Super Large Hadron Collider.
Abstract: We have developed a novel and highly radiation-tolerant n-in-p silicon microstrip sensor for very high radiation environments such as in the Super Large Hadron Collider. The sensors are designed for a fluence of 1×1015 neq/cm2 and are fabricated from p-type, FZ, 6 in. (150 mm) wafers onto which we lay out a single 9.75 cm×9.75 cm large-area sensor and several 1 cm×1 cm miniature sensors with various n-strip isolation structures. By evaluating the sensors both pre- and post-irradiation by protons and neutrons, we find that the full depletion voltage evolves to approximately 800 V and that the n-strip isolation depends on the p+ concentration. In addition, we characterize the interstrip resistance, interstrip capacitance and the punch-through-protection (PTP) voltage. The first fabrication batch allowed us to identify the weak spots in the PTP and the stereo strip layouts. By understanding the source of the weakness, the mask was modified accordingly. After modification, the follow-up fabrication batches and the latest fabrication of about 30 main sensors and associated miniature sensors have shown good performance, with no sign of microdischarge up to 1000 V.

79 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the FD gain degradation after irradiation with 24 GeV protons and fast and thermal neutrons to fluences up to 6/spl middot/10/sup 14/n/cm/sup 2.
Abstract: DMILL bipolar transistors (npn) were exposed to 24 GeV protons and fast and thermal neutrons to fluences up to 6/spl middot/10/sup 14/ n/cm/sup 2/. Transistor common emitter current gain (/spl beta/=I/sub collector//I/sub base/) was measured after irradiations. It was found that /spl beta/ degradation scales as /spl Delta/(1//spl beta/)=k/sub T//spl middot//spl Phi//sub T/ where /spl Phi//sub T/ is the fluence of thermal neutrons and as /spl Delta/(1//spl beta/)=k/sub eq//spl middot//spl Phi//sub eq/, with /spl Phi//sub eq/ 1-MeV equivalent fluence, if transistors are irradiated with protons or fast neutrons. Large damage factor k/sub T//spl sim/3/spl middot/k/sub eq/ was measured. Thermal neutrons do not have sufficient energy to displace a Si atom. Their damage mechanism is, therefore, identified with /sup 10/B(n,/spl alpha/)/sup 7/Li reaction from which energetic /spl alpha/ and Li particles produce bulk damage in the base of the device. Boron is used as the base dopant in these transistors having also highly doped regions below base contacts. Irradiations with neutrons with energies distributed from thermal to fast show that gain degradation adds up as /spl Delta/(1//spl beta/)=k/sub T//spl middot//spl Phi//sub T/+k/sub eq//spl middot//spl Phi//sub eq/.

61 citations

Journal ArticleDOI
24 Oct 1999
TL;DR: The ABCD design is a single chip implementation of the binary readout architecture for silicon strip detectors in the ATLAS semiconductor tracker that has been manufactured successfully in the DMILL process and evaluated using a prototype SCT module equipped with the ABCD chips.
Abstract: The ABCD design is a single chip implementation of the binary readout architecture for silicon strip detectors in the ATLAS semiconductor tracker. The prototype chip has been manufactured successfully in the DMILL process. In the paper we present the design of the chip and the measurement results. The basic analogue performance of the ABCD design has been evaluated using a prototype SCT module equipped with the ABCD chips. The digital performance has been evaluated using a general purpose IC tester. The measurements confirmed that all blocks of the ABCD design are fully functional and the chips meet all basic requirements of the SCT. Wafer screening has been performed using a customised wafer tester.

50 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
Georges Aad1, M. Ackers2, F. Alberti, M. Aleppo3  +264 moreInstitutions (18)
TL;DR: In this article, the silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized and detailed descriptions of the pixel detector electronics and the silicon sensors are given.
Abstract: The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed.

709 citations

Journal ArticleDOI
TL;DR: This paper categorizes the work on wearable flexible sensors according to the materials used for designing the system, the network protocols, and different types of activities that were being monitored.
Abstract: This paper provides a review on some of the significant research work done on wearable flexible sensors (WFSs). Sensors fabricated with the flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for the further analyses. The use of wearable sensors has played a quite important role to monitor the physiological parameters of a person to minimize any malfunctioning happening in the body. This paper categorizes the work according to the materials used for designing the system, the network protocols, and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the WFSs regarding its market values are also briefly explained in this paper.

368 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD), which is based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications.
Abstract: This paper introduces a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications. The main differences to standard APD detectors are the low gain requested to detect high energy charged particles, and the possibility to have fine segmentation pitches: this allows fabrication of microstrip or pixel devices which do not suffer from the limitations normally found [1] in avalanche detectors. In addition, a moderate multiplication value will allow the fabrication of thinner devices with the same output signal of standard thick substrates. The investigation of these detectors provides important indications on the ability of such modified electrode geometry to control and optimize the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated silicon detectors, at reasonable bias voltage, compatible with the voltage feed limitation of the CERN High Luminosity Large Hadron Collider (HL-LHC) experiments [2] . For instance, the inner most pixel detector layers of the ATLAS tracker will be exposed to fluences up to 2×10 16 1 MeV n eq /cm 2 , while for the inner strip detector region fluences of 1×10 15 n eq /cm 2 are expected. The gain implemented in the non-irradiated devices must retain some effect also after irradiation, with a higher multiplication factor with respect to standard structures, in order to be used in harsh environments such those expected at collider experiments.

295 citations